int(2) string(32) "Undefined array key "start_form"" string(70) "/home1/ijahitij/public_html/application/controllers/UpArticalFront.php" int(35) int(2) string(28) "Undefined array key "search"" string(70) "/home1/ijahitij/public_html/application/controllers/UpArticalFront.php" int(36) int(2) string(26) "Undefined array key "type"" string(70) "/home1/ijahitij/public_html/application/controllers/UpArticalFront.php" int(37) {"issue_total":[{"id":"315","issue_id":"0","doi_number":"10.36062\/ijah.2024.05724","title":"Clinico-pathological study and surgical management of benign prostatic hyperplasia with perineal hernia in a dog","description":"
Abstract<\/strong><\/p>\r\n\r\n The present study describes the clinico-pathological findings of benign prostatic hyperplasia along with perineal hernia in a six-year-old intact male Spitz dog. The dog was presented to the Department of Veterinary Clinical Complex, LUVAS, Hisar, with a history of swelling in the perineal region along with cessation of urination. The clinical examination revealed that swelling was fluctuating in nature, and it was diagnosed as a perineal hernia of the right side. Ultrasonographic examination showed the presence of urinary bladder and prostatic mass in the herniated swelling. Under general anaesthesia, perineal hernia was corrected surgically by herniorrhaphy. The prostate was greatly enlarged and was suspected as a tumor mass; hence, it was excised and processed for histopathology after fixation in 10% neutral buffered formalin. After prostate was excised, vesicourethral anastomosis was performed. Histopathological examination of excised mass of prostate gland revealed benign prostatic hyperplasia. It was characterized by hyperplasia of glandular epithelium with occasional presence of papillary folding. <\/strong>Based on clinical examination, ultrasonography and histopathological findings, the case was diagnosed as benign prostatic hyperplasia along with perineal hernia.<\/strong> Post-operative care was advised as usual. No post-operative complications were reported till two months after surgery.<\/strong><\/p>\r\n","keywords":"Benign prostatic hyperplasia, Dog, Perineal hernia, Prostatectomy","article_type":"3","status":"Y","price_status":"F","reference":" Das MR, Patra RC, Das RK, Rath PK and Mishra BP, 2017. Hemato-biochemical alterations and urinalysis in dogs suffering from benign prostatic hyperplasia. Vet World, 10(3): 331-335, doi: 10.14202\/vetworld.2017.331-335<\/a><\/p>\r\n\r\n Kim H, 2022. Finasteride therapy in a dog with benign prostatic hyperplasia. J Anim Reprod Biotechnol, 37: 209-212, doi: 10.12750\/JARB.37.3.209<\/a><\/p>\r\n\r\n Nizanski W, Levy X, Ochota M and Pasikowska J, 2014. Pharmacological treatment for common prostatic conditions in dogs- benign prostatic hyperplasia and prostatitis: An update. Reprod Domest Anim, 49(2): 8-15, doi: 10.1111\/rda.12297<\/a><\/p>\r\n\r\n Palmieri C, Fonseca-Alves CE and Laufer-Amorim R, 2022. A review on canine and feline prostate pathology. <\/em>Front Vet Sci, 9: 881232, doi: 10.3389\/fvets.2022.881232<\/a><\/p>\r\n\r\n Pinheiro D, Machado J, Viegas C, Baptista C and Bastos E, 2017. Evaluation of biomarker canine-prostate specific arginine esterase (CPSE) for the diagnosis of benign prostatic hyperplasia. BMC Vet Res, 13(1): 76, doi: 10.1186\/s12917-017-0996-5<\/a><\/p>\r\n\r\n Przadka P, Liszka B, Piatek A, Skrzypczak P and Dzimira S, 2019. Total prostatectomy combined with urethral anastomosis in a dog: A case report. Vet Med, 64: 280-286, doi: 10.17221\/134\/2018-VETMED<\/a><\/p>\r\n\r\n Sun F, Bae-Diaz C and Sanchez-Margallo FM, 2017. Canine prostate models in preclinical studies of minimally invasive interventions: part II, benign prostatic hyperplasia models. Transl Androl Urol, 6: 547-555, doi: 10.21037\/tau.2017.03.62<\/a><\/p>\r\n\r\n Zambelli D, Ballotta G, Valentini S and Cunto M, 2022. Total perineal prostatectomy: A retrospective study in six dogs. Animals, 12(2): 200, doi: 10.3390\/ani12020200<\/a><\/p>\r\n","corresponding_author_email":"sulkhs.vet@gmail.com","received_date":"2024-04-13","accepted_date":"2024-07-11","published_date":"2024-07-21","citation":"Sulekha, Kumar S, Jangir BL, Deepika, Niwas R and Tiwari DK, 2024. Clinico-pathological study and surgical management of benign prostatic hyperplasia with perineal hernia in a dog. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2024.05724","pageNumber":"","number_view":"49","snippet":"057-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.05724-315","author":"","is_show":"Y","feature_view":"Y"},{"id":"321","issue_id":"0","doi_number":"10.36062\/ijah.2024.04024","title":"Production, characterization and bio functionalities of bioactive peptides from non-bovine species of milk: A review","description":" Abstract<\/strong><\/p>\r\n\r\n The exploration of bioactive peptides derived from non-bovine milk has garnered considerable interest due to their potential health-promoting properties and functional applications. This review provides an overview of production, characterization, and biofunctionalities of bioactive peptides obtained from various non-bovine milk sources, including but not limited to goat, sheep, buffalo, and camel milk. The production methods involve enzymatic hydrolysis or fermentation of milk proteins using proteolytic enzymes as trypsin, pepsin, and chymosin, among others or by using different cultures. Subsequently, various separation and purification techniques are employed to isolate the bioactive peptides, including ultrafiltration, chromatography and membrane separation. The structures of the bioactive peptides are identified and clarified through the use of characterization techniques such as nuclear magnetic resonance (NMR) spectroscopy, high-performance liquid chromatography (HPLC) and mass spectrometry. These peptides exhibit diverse biological activities, including antioxidant, antimicrobial, antihypertensive, immunomodulatory and opioid-like properties, among others. Furthermore, the bioactive peptides derived from non-bovine milk have demonstrated potential health benefits, such as reducing blood pressure, enhancing immune function, promoting gut health and exerting anti-inflammatory effects. Additionally, they find applications in functional foods, nutraceuticals and pharmaceutical formulations aimed at improving human health and wellbeing.<\/strong><\/p>\r\n","keywords":"Bioactive peptides, Biofunctionalities, Fermentation, Lactic acid bacteria, Non-bovine milk ","article_type":"1","status":"Y","price_status":"F","reference":" Ahmad G, Almasry M, Dhillon AS, Abuayyash MM, Kothandaraman N et al<\/em>., 2017. Overview and Sources of Reactive Oxygen Species (ROS) in the Reproductive System. In: Agarwal, A., et al.<\/em> Oxidative Stress in Human Reproduction. Springer, Cham, doi: 10.1007\/978-3-319-48427-3_1<\/a><\/p>\r\n\r\n Ahmed AS, El-Bassiony T, Elmalt LM and Ibrahim HR, 2015. Identification of potent antioxidant bioactive peptides from goat milk proteins. Food Res Int, 74: 80-88, doi: 10.1016\/j.foodres.2015.04.032<\/a><\/p>\r\n\r\n Alferez MJM, Aliaga IL, Barrionuevo M and Campos MS, 2003. Effect of dietary inclusion of goat milk on the bioavailability of zinc and selenium in rats. Journal Dairy Res, 70(2): 181-187, doi: 10.1017\/S0022029903006058<\/a><\/p>\r\n\r\n Alhaj OA, 2017. Identification of potential ACE-inhibitory peptides from dromedary fermented camel milk. CyTA J Food, 15(2): 191-195, doi: 10.1080\/19476337.2016.1236353<\/a><\/p>\r\n\r\n Alichanidis E, Moatsou G and Polychroniadou A, 2016. Composition and properties of non-cow milk and products. In Non-bovine Milk and Milk Products, pp 81-116, Academic Press, doi: 10.1016\/B978-0-12-803361-6.00005-3<\/a><\/p>\r\n\r\n Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K et al<\/em>., 2002. Methods for testing antioxidant activity. Analyst, 127(1): 183-198, doi: 10.1039\/B009171P<\/a><\/p>\r\n\r\n Aslam MZ, Shoukat S, Hongfei Z and Bolin Z, 2019. Peptidomic analysis of ACE inhibitory peptides extracted from fermented goat milk. Int J Pept Res Ther, 25: 1259-1270, doi: 10.1007\/s10989-018-9771-0<\/a><\/p>\r\n\r\n Aviel-Ronen S, Lau SK, Pintilie M, Lau D, Liu N et al<\/em>., 2008. Glypican-3 is overexpressed in lung squamous cell carcinoma, but not in adenocarcinoma. Mod Pathol, 21(7): 817-825, doi: 10.1038\/modpathol.2008.37<\/a><\/p>\r\n\r\n Bafna S, Kaur S and Batra SK, 2010. Membrane-bound mucins: The mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 29(20): 2893-2904, doi: 10.1038\/onc.2010.87<\/a><\/p>\r\n\r\n Bakry IA, Yang L, Farag MA, Korma SA, Khalifa I et al<\/em>., 2021. A comprehensive review of the composition, nutritional value and functional properties of camel milk fat. Foods, 10(9): 2158, doi: 10.3390\/foods10092158<\/a><\/p>\r\n\r\n Balthazar CF, Pimentel TC, Ferrão LL, Almada CN, Santillo A et al<\/em>., 2017. Sheep milk: physicochemical characteristics and relevance for functional food development. Compr Rev Food Sci Food Saf, 16(2): 247-262, doi: 10.1111\/1541-4337.12250<\/a><\/p>\r\n\r\n Barlowska J, Szwajkowska M, Litwi?czuk Z and Król J, 2011. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr Rev Food Sci Food Saf, 10(6): 291-302, doi: 10.1111\/j.1541-4337.2011.00163.x<\/a><\/p>\r\n\r\n Barrionuevo M, Aliaga L, Alférez MJ, Mesa E, Nestáres T et al<\/em>., 2003. Beneficial effect of goat milk on bioavailability of copper, zinc and selenium in rats. J Physiol Biochem, 59(2): 111-118, doi: 10.1007\/bf03179876<\/a> <\/p>\r\n\r\n Beltrami L, Zingale LC, Carugo S and Cicardi M, 2006. Angiotensin-converting enzyme inhibitor-related angioedema: how to deal with it. Expert Opin drug Saf, 5(5): 643-649, doi: 10.1517\/14740338.5.5.643<\/a><\/p>\r\n\r\n Bhattarai RR, 2012. Importance of goat milk. J Food Sci Technol Nepal, 7: 107-111, doi: 10.3126\/jfstn.v7i0.11209<\/a><\/p>\r\n\r\n Brumini D, Criscione A, Bordonaro S, Vegarud GE, Marletta D et al<\/em>., 2016. Whey proteins and their antimicrobial properties in donkey milk: A brief review. Dairy Sci Technol, 96: 1-14, doi: 10.1007\/s13594-015-0246-1<\/a><\/p>\r\n\r\n Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Lagana A et al<\/em>., 2016. Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal Bioanal Chem, 408: 2677-2685<\/p>\r\n\r\n Ceballos LS, Morales ER, de la Torre Adarve G, Castro JD, Martínez LP et al<\/em>., 2009. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J Food Comp Anal, 22(4): 322-329, doi: 10.1016\/j.jfca.2008.10.020<\/a><\/p>\r\n\r\n Chia J, Burrow K, Carne A, McConnell M, Samuelsson L et al<\/em>., 2017. Minerals in sheep milk. In: Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Elsevier: Amsterdam, The Netherlands. Chapter 27, pp 345-362, doi: 10.1016\/B978-0-12-809762-5.00027-9<\/a><\/p>\r\n\r\n Chiangjong W, Chutipongtanate S and Hongeng S, 2020. Anticancer peptide: physicochemical property, functional aspect and trend in clinical application. Int J Oncol, 57(3): 678-696, doi: 10.3892\/ijo.2020.5099<\/a><\/p>\r\n\r\n Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD et al<\/em>., 2018. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 138: 271-281, doi: 10.1016\/j.diabres.2018.02.023<\/a><\/p>\r\n\r\n Claeys WL, Verraes C, Cardoen S, De Block J, Huyghebaert A et al<\/em>., 2014. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control, 42: 188-201, doi: 10.1016\/j.foodcont.2014.01.045<\/a><\/p>\r\n\r\n Contreras F, de la Parte MA, Cabrera J, Ospino N, Israili ZH et al<\/em>., 2003. Role of angiotensin II AT1 receptor blockers in the treatment of arterial hypertension. Am J Ther, 10(6): 401-408, doi: 10.1097\/00045391-200311000-00005<\/a><\/p>\r\n\r\n Coppola R, Salimei E, Succi M, Sorrentino E, Nanni M et al<\/em>., 2002. Behaviour of Lactobacillus rhamnosus<\/em> strains in ass's milk. Annal Microbiol, 52(1): 55-60<\/p>\r\n\r\n Correa APF, Daroit DJ, Coelho J, Meira SM, Lopes FC et al<\/em>., 2011. Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. J Sci Food Agric, 91(12): 2247-2254, doi: 10.1002\/jsfa.4446<\/a><\/p>\r\n\r\n Crowley SV, Kelly AL, Lucey JA and O'Mahony JA, 2017. Potential Applications of Non-Bovine Mammalian Milk in Infant Nutrition. In: Handbook of Milk of Non- Bovine Mammals, pp 625-654, doi: 10.1002\/9781119110316.ch13<\/a><\/p>\r\n\r\n DePeters EJ and Ferguson JD, 1992. Nonprotein nitrogen and protein distribution in the milk of cows. J Dairy Sci, 75(11): 3192-3209, doi: 10.3168\/jds.S0022-0302(92)78085-0<\/a><\/p>\r\n\r\n Dharmaraja AT, 2017. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem, 60(8): 3221-3240, doi: 10.1021\/acs.jmedchem.6b01243<\/a><\/p>\r\n\r\n Ehlayel MS, Hazeima KA, Al-Mesaifri F and Bener A, 2011. Camel milk: An alternative for cow's milk allergy in children. In: Allergy Asthma Proc (Vol. 32, No. 3, pp 255-258), doi: 10.2500\/aap.2011.32.3429<\/a><\/p>\r\n\r\n Eigel WN, Butler JE, Ernstrom CA, Farrell Jr HM, Harwalkar VR et al<\/em>., 1984. Nomenclature of proteins of cow's milk: fifth revision. J Dairy Sci, 67(8): 1599-1631, doi: 10.3168\/jds.S0022-0302(84)81485-X<\/a><\/p>\r\n\r\n Fadnes B, Rekdal Ø and Uhlin-Hansen L, 2009. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells. BMC Cancer, 9: 1-13, doi: 10.1186\/1471-2407-9-183<\/a><\/p>\r\n\r\n FAO, 2022. Poimena Analysis and International Wool Textile Organisation. Available in: https:\/\/iwto.org\/wp-content\/uploads\/2022\/04\/IWTO-Market-Information-Sample-Edition-17.pdf<\/a> <\/p>\r\n\r\n FAOSTAT. 2024(n.d.). Retrieved from https:\/\/www.fao.org\/faostat\/en\/#home<\/a> In-Text Citation: (“FAOSTAT,” n.d.)<\/p>\r\n\r\n Gachons C and Breslin PA, 2016. Salivary amylase: digestion and metabolic syndrome. Curr Diab Rep, 16: 1-7, doi: 10.1007\/s11892-016-0794-7<\/a><\/p>\r\n\r\n Gammoh S, Alu'datt MH, Tranchant CC, Alhamad MN, Rababah T et al<\/em>., 2020. Modification of the functional and bioactive properties of camel milk casein and whey proteins by ultrasonication and fermentation with Lactobacillus delbrueckii<\/em> subsp. lactis<\/em>. LWT, 129: 109501, doi: 10.1016\/j.lwt.2020.109501<\/a><\/p>\r\n\r\n Gomez-Ruiz JÁ, López-Expósito I, Pihlanto A, Ramos M, Recio I et al<\/em>., 2008. Antioxidant activity of ovine casein hydrolysates: identification of active peptides by HPLC–MS\/MS. European Food Res Technol, 227: 1061-1067, doi: 10.1007\/s00217-008-0820-3<\/a><\/p>\r\n\r\n Gomez-Ruiz JÁ, Ramos M and Recio I, 2007. Identification of novel angiotensin-converting enzyme-inhibitory peptides from ovine milk proteins by CE-MS and chromatographic techniques. Electrophoresis, 28(22): 4202-4211, doi: 10.1002\/elps.200700324<\/a><\/p>\r\n\r\n Gong H, Gao J, Wang Y, Luo QW, Guo KR et al<\/em>., 2020. Identification of novel peptides from goat milk casein that ameliorate high-glucose-induced insulin resistance in HepG2 cells. J Dairy Sci, 103(6): 4907-4918l, doi: 10.3168\/jds.2019-17513<\/a><\/p>\r\n\r\n Gruden S and Poklar Ulrih N, 2021. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int J Mol Sci, 22(20): 11264, doi: 10.3390\/ijms222011264<\/a><\/p>\r\n\r\n Gul W, Farooq N, Anees D, Khan U, Rehan F et al<\/em>., 2015. Camel milk: A boon to mankind. Int J Res Stud Biosci, 3: 23-29<\/p>\r\n\r\n Habib HM, Ibrahim WH, Schneider-Stock R and Hassan HM, 2013. Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem, 141(1): 148-152, doi: 10.1016\/j.foodchem.2013.03.039<\/a><\/p>\r\n\r\n Harris F, Dennison SR, Singh J and Phoenix DA, 2013. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev, 33(1): 190-234, doi: 10.1002\/med.20252<\/a><\/p>\r\n\r\n Haskito AEP, Mahdi C, Padaga MC and Roosdiana A, 2020. The effect of goat milk yoghurt casein antioxidant activity on histopathology of lung in male Rattus norvegicus exposed by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). In J Physics: Conference Series (Vol. 1430, No. 1, pp 012010), IOP Publishing, doi: 10.1088\/1742-6596\/1430\/1\/012010<\/a><\/p>\r\n\r\n Hati S, Patel N and Mandal S, 2018. Comparative growth behaviour and biofunctionality of lactic acid bacteria during fermentation of soy milk and bovine milk. Prob Antimicrob Proteins, 10: 277-283, doi: 10.1007\/s12602-017-9279-5<\/a><\/p>\r\n\r\n Herrouin M, Mollé D, Fauquant J, Ballestra F, Maubois JL et al<\/em>., 2000. New genetic variants identified in donkey's milk whey proteins. J Protein Chem, 19: 105-116, doi: 10.1023\/A:1007078415595<\/a><\/p>\r\n\r\n Homayouni-Tabrizi M, Asoodeh A and Soltani M, 2017. Cytotoxic and antioxidant capacity of camel milk peptides: effects of isolated peptide on superoxide dismutase and catalase gene expression. J Food Anal, 25(3): 567-575, doi: 10.1016\/j.jfda.2016.10.014<\/a><\/p>\r\n\r\n Iram D, Sansi MS, Zanab S, Vij S, Ashutosh et al<\/em>., 2022. In silico<\/em> identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins- A molecular docking study. J Food Biochem, 46(11): e14137, doi: 10.1111\/jfbc.14137<\/a><\/p>\r\n\r\n Izadi A, Khedmat L and Mojtahedi SY, 2019. Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J Funct Foods, 60: 103441, doi: 10.1016\/j.jff.2019.103441<\/a><\/p>\r\n\r\n Jiang J, Chen S, Ren F, Luo Z and Zeng SS, 2007. Yak milk casein as a functional ingredient: preparation and identification of angiotensin-I-converting enzyme inhibitory peptides. J Dairy Res, 74(1): 18-25, doi: 10.1016\/j.jff.2019.103441<\/a><\/p>\r\n\r\n Jilo K and Tegegne D, 2016. Chemical composition and medicinal values of camel milk. Int J Res Stud Biosci, 4(4): 13-25<\/p>\r\n\r\n Jodhani K, Basaiawmoit B, Sakure A, Das S, Hati S et al<\/em>., 2022. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk. J Food Sci Technol, 59(11): 4262-4272, doi: 10.1007\/s13197-022-05493-2<\/a><\/p>\r\n\r\n Kapila R, Kavadi PK and Kapila S, 2013. Comparative evaluation of allergic sensitization to milk proteins of cow, buffalo and goat. Small Rumin Res, 112(1-3): 191-198, doi:10.1016\/j.smallrumres.2012.11.028<\/a><\/p>\r\n\r\n Kie?czewska K, Jankowska A, D?browska A, Wachowska M, Ziajka J et al<\/em>., 2020. The effect of high pressure treatment on the dispersion of fat globules and the fatty acid profile of caprine milk. Int Dairy J, 102: 104607, doi:10.1016\/j.idairyj.2019.104607<\/a><\/p>\r\n\r\n Kitts DD and Weiler K, 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des, 9(16): 1309-1323, doi: 10.2174\/1381612033454883<\/a><\/p>\r\n\r\n Koksal Z, Gulcin I and Ozdemir H, 2016. An important milk enzyme: lactoperoxidase. Milk Proteins-From Structure to Biological Properties and Health Aspects, pp 141-156<\/p>\r\n\r\n Kompan D and Komprej A, 2012. The effect of fatty acids in goat milk on health. In Milk production- An up-to-date Overview of Animal Nutrition, Management and Health. Intech Open, doi: 10.5772\/50769<\/a><\/p>\r\n\r\n Krentz AJ and Bailey CJ, 2005. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs, 65: 385-411, doi: 10.2165\/00003495-200565030-00005<\/a><\/p>\r\n\r\n Kumar A and Sharma A, 2016. Nutritional and medicinal superiority of goat milk over cow milk in infants. Int J Pediatric Nurs, 2(1): 47-50<\/p>\r\n\r\n Lammi C, Zanoni C, Arnoldi A and Vistoli G, 2016. Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: In vitro<\/em> biochemical screening and in silico<\/em> molecular modeling study. J Agric Food Chem, 64(51): 9601-9606, doi: 10.1021\/acs.jafc.6b04041<\/a><\/p>\r\n\r\n Lee SH and Jeon YJ, 2013. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia, 86: 129-136, doi: 10.1016\/j.fitote.2013.02.013<\/a><\/p>\r\n\r\n Leong A, Liu Z, Almshawit H, Zisu B, Pillidge C et al<\/em>., 2019. Oligosaccharides in goats’ milk-based infant formula and their prebiotic and anti-infection properties. Br J Nutr, 122(4): 441-449, doi: 10.1017\/S000711451900134X<\/a><\/p>\r\n\r\n Li J, Liu S, Lakshminarayanan R, Bai Y, Pervushin K et al<\/em>., 2013. Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability. Biochim Biophys Acta Biomembr, 1828(3): 1112-1121, doi: 10.1016\/j.bbamem.2012.12.015<\/a><\/p>\r\n\r\n Li Y, Ma Q, Liu G and Wang C, 2022. Effects of donkey milk on oxidative stress and inflammatory response. J Food Biochem, 46(4): e13935, doi: 10.1111\/jfbc.13935<\/a><\/p>\r\n\r\n Loboda D, Koz?owski H and Rowi?ska-?yrek M, 2018. Antimicrobial peptide- metal ion interactions- A potential way of activity enhancement. New J Chem, 42(10): 7560-7568, doi: 10.1039\/C7NJ04709F<\/a><\/p>\r\n\r\n Madhusudan NC, Ramachandra CD, Udaykumar ND, Sharnagouda HD, Nagraj ND et al<\/em>., 2017. Composition, characteristics, nutritional value and health benefits of donkey milk- A review. Dairy Science and Technology, EDP sciences\/Springer<\/p>\r\n\r\n Majumder K and Wu J, 2014. Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Inter J Mol Sci, 16(1): 256-283, doi: 10.3390\/ijms16010256<\/a><\/p>\r\n\r\n Makrilakis K, 2019. The role of DPP-4 inhibitors in the treatment algorithm of type 2 diabetes mellitus: when to select, what to expect. Inter J Environ Res Public Health, 16(15): 2720, doi: 10.3390\/ijerph16152720<\/a><\/p>\r\n\r\n Manaer T, Yu L, Zhang Y, Xiao XJ, Nabi XH et al<\/em>., 2015. Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin. J Ethnopharmacol, 169: 269-274, doi: 10.1016\/j.jep.2015.04.032<\/a><\/p>\r\n\r\n Martini M, Altomonte I, Tricò D, Lapenta R, Salari F et al<\/em>., 2021. Current knowledge on functionality and potential therapeutic uses of donkey milk. Animals, 11(5): 1382, doi: 10.3390\/ani11051382<\/a><\/p>\r\n\r\n Mati A, Senoussi-Ghezali C, Zennia SSA, Almi-Sebbane D, El-Hatmi H et al<\/em>., 2017. Dromedary camel milk proteins, a source of peptides having biological activities- A review. Int Dairy J, 73: 25-37, doi: 10.1016\/j.idairyj.2016.12.001<\/a><\/p>\r\n\r\n May GL, Wright LC, Dyne M, MacKinnon WB, Fox RM et al<\/em>., 1988. Plasma membrane lipid composition of vinblastine sensitive and resistant human leukaemic lymphoblasts. Int J Cancer, 42(5): 728-733, doi: 10.1002\/ijc.2910420517<\/a><\/p>\r\n\r\n Mehra R, Sangwan K and Garhwal R, 2021. Composition and therapeutic applications of goat milk and colostrum. Research and Reviews. J Dairy Sci Technol, 10(2): 1-7<\/p>\r\n\r\n Meisel H and FitzGerald RJ, 2003. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des, 9(16): 1289-1296, doi: 10.2174\/1381612033454847<\/a><\/p>\r\n\r\n Mellander OLOF, 1950. The physiologic importance of the casein phosphopeptide calcium salt, II: peroral calcium dosage of infants. Some aspects of the pathogenesis of rickets. Acta Soc Med Ups, 55: 247-255<\/p>\r\n\r\n Muhialdin BJ and Algboory HL, 2018. Identification of low molecular weight antimicrobial peptides from Iraqi camel milk fermented with Lactobacillus plantarum<\/em>. Pharma Nutr, 6(2): 69-73, doi: 10.1016\/j.phanu.2018.02.002<\/a><\/p>\r\n\r\n Naafs MA, 2018. The antimicrobial peptides: ready for clinical trials. Biomed J Sci Tech Res, 7: 001536, doi: 10.26717\/BJSTR.2018.07.001536<\/a><\/p>\r\n\r\n NAAS, 2021. Potential of Non-Bovine Milk. Policy Paper No. 97, National Academy of Agricultural Sciences, New Delhi, pp 20<\/p>\r\n\r\n Naveen J and Baskaran V, 2018. Antidiabetic plant-derived nutraceuticals: A critical review. Eur J Nutri, 57: 1275-1299, doi: 10.1007\/s00394-017-1552-6<\/a><\/p>\r\n\r\n NDDB. Accessed September 23, 2021. https:\/\/www.nddb.coop\/ccnddb\/milk-facts<\/a><\/p>\r\n\r\n Nguyen LT, Haney EF and Vogel HJ, 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 29(9): 464-472, doi: 10.1016\/j.tibtech.2011.05.001<\/a><\/p>\r\n\r\n Nong NTP and Hsu JL, 2021. Characteristics of food protein-derived antidiabetic bioactive peptides: A literature update. Int J Mol Sci, 22(17): 9508, doi: 10.3390\/ijms22179508<\/a><\/p>\r\n\r\n Nudda A, Atzori AS, Correddu F, Battacone G, Lunesu MF et al<\/em>., 2020. Effects of nutrition on main components of sheep milk. Small Rumin Res, 184: 106015, doi: 10.1016\/j.smallrumres.2019.11.001<\/a><\/p>\r\n\r\n Papo N, Seger D, Makovitzki A, Kalchenko V, Eshhar Z et al<\/em>., 2006. Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense–like lytic peptide. Cancer Res, 66(10): 5371-5378, doi:10.1158\/0008-5472.CAN-05-4569<\/a><\/p>\r\n\r\n Park YW and Haenlein GF, 2007. Goat milk, its products and nutrition. In: Handbook of food products manufacturing, pp 449-488, doi: 10.1002\/9780470113554.ch69<\/a><\/p>\r\n\r\n Parmar H, Hati S, Panchal G and Sakure AA, 2020. Purification and production of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented goat milk. <\/p>\r\n\r\n Int J Pept Res Ther, 26: 997-1011, doi: 10.1007\/s10989-019-09902-7<\/a><\/p>\r\n\r\n Patel D, Basaiawmoit B, Sakure A, Das S, Maurya R et al<\/em>., 2021. Exploring potentials of antioxidative, anti-inflammatory activities and production of bioactive peptides in lactic fermented camel milk. Food Biosci, 44: 101404, doi: 10.1016\/j.fbio.2021.101404<\/a><\/p>\r\n\r\n Pei J, Jiang H, Li X, Jin W and Tao Y, 2017. Antimicrobial peptides sourced from post-butter processing waste yak milk protein hydrolysates. AMB Express, 7: 1-6, doi: 10.1186\/s13568-017-0497-8<\/a><\/p>\r\n\r\n Prosser CG, 2021. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J Food Sci, 86(2): 257-265, doi: 10.1111\/1750-3841.15574<\/a><\/p>\r\n\r\n Rassin DK, Sturman JA and Gaull GE, 1978. Taurine and other free amino acids in milk of man and other mammals. Early Hum Dev, 2(1): 1-13, doi: 10.1016\/0378-3782(78)90048-8<\/a><\/p>\r\n\r\n Reddy V, Urooj A and Kumar A, 2005. Evaluation of antioxidant activity of some plant extracts and their application in biscuits. Food Chem, 90(1-2): 317-321, doi: 10.1016\/j.foodchem.2004.05.038<\/a><\/p>\r\n\r\n Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S et al<\/em>., 2011. In search of a novel target- Phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta, 1808(11): 2638-2645, doi: 10.1016\/j.bbamem.2011.07.026<\/a><\/p>\r\n\r\n Rizzello CG, Losito I, Gobbetti M, Carbonara T, De Bari MD et al<\/em>., 2005. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci, 88(7): 2348-2360, doi: 10.3168\/jds.S0022-0302(05)72913-1<\/a><\/p>\r\n\r\n Sansi MS, Iram D, Zanab S, Vij S, Puniya AK et al<\/em>., 2022. Antimicrobial bioactive peptides from goat milk proteins: in silico<\/em> prediction and analysis. J Food Biochem, 46(10): e14311, doi: 10.1111\/jfbc.14311<\/a><\/p>\r\n\r\n Saravanan D and Mohammed Al-Kassim H, 2015. A review of potential anticancers from antimicrobial peptides. Inter J Pharm and Pharm Sci, 7(4): 19-26<\/p>\r\n\r\n Sherbet GV, 1989. Membrane fluidity and cancer metastasis. Pathobiology, 57(4): 198-205, doi: 10.1159\/000163526<\/a><\/p>\r\n\r\n Shori AB, 2015. Camel milk as a potential therapy for controlling diabetes and its complications: A review of in vivo<\/em> studies. J Food Drug Anal, 23(4): 609-618, doi: 10.1016\/j.jfda.2015.02.007<\/a><\/p>\r\n\r\n Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK et al<\/em>., 2023. Antidiabetic, angiotensin?converting enzyme inhibitory and anti?inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic?fermented camel milk with molecular interaction study. Int J Dairy Technol, 76(1): 149-167, doi:10.1111\/1471-0307.12910<\/a><\/p>\r\n\r\n Shukla P, Sakure A, Pipaliya R, Basaiawmoit B, Maurya R et al<\/em>., 2022. Exploring the potential of Lacticaseibacillus paracasei<\/em> M11 on antidiabetic, anti?inflammatory, and ACE inhibitory effects of fermented dromedary camel milk (Camelus dromedaries<\/em>) and the release of antidiabetic and anti-hypertensive peptides. J Food Biochem, 46(12): e14449, doi: