int(2) string(32) "Undefined array key "start_form"" string(70) "/home1/ijahitij/public_html/application/controllers/UpArticalFront.php" int(35) int(2) string(28) "Undefined array key "search"" string(70) "/home1/ijahitij/public_html/application/controllers/UpArticalFront.php" int(36) int(2) string(26) "Undefined array key "type"" string(70) "/home1/ijahitij/public_html/application/controllers/UpArticalFront.php" int(37) {"issue_total":[{"id":"315","issue_id":"0","doi_number":"10.36062\/ijah.2024.05724","title":"Clinico-pathological study and surgical management of benign prostatic hyperplasia with perineal hernia in a dog","description":"

Abstract<\/strong><\/p>\r\n\r\n

The present study describes the clinico-pathological findings of benign prostatic hyperplasia along with perineal hernia in a six-year-old intact male Spitz dog. The dog was presented to the Department of Veterinary Clinical Complex, LUVAS, Hisar, with a history of swelling in the perineal region along with cessation of urination. The clinical examination revealed that swelling was fluctuating in nature, and it was diagnosed as a perineal hernia of the right side. Ultrasonographic examination showed the presence of urinary bladder and prostatic mass in the herniated swelling. Under general anaesthesia, perineal hernia was corrected surgically by herniorrhaphy. The prostate was greatly enlarged and was suspected as a tumor mass; hence, it was excised and processed for histopathology after fixation in 10% neutral buffered formalin. After prostate was excised, vesicourethral anastomosis was performed. Histopathological examination of excised mass of prostate gland revealed benign prostatic hyperplasia. It was characterized by hyperplasia of glandular epithelium with occasional presence of papillary folding. <\/strong>Based on clinical examination, ultrasonography and histopathological findings, the case was diagnosed as benign prostatic hyperplasia along with perineal hernia.<\/strong> Post-operative care was advised as usual. No post-operative complications were reported till two months after surgery.<\/strong><\/p>\r\n","keywords":"Benign prostatic hyperplasia, Dog, Perineal hernia, Prostatectomy","article_type":"3","status":"Y","price_status":"F","reference":"

Das MR, Patra RC, Das RK, Rath PK and Mishra BP, 2017. Hemato-biochemical alterations and urinalysis in dogs suffering from benign prostatic hyperplasia. Vet World, 10(3): 331-335, doi: 10.14202\/vetworld.2017.331-335<\/a><\/p>\r\n\r\n

Kim H, 2022. Finasteride therapy in a dog with benign prostatic hyperplasia. J Anim Reprod Biotechnol, 37: 209-212, doi: 10.12750\/JARB.37.3.209<\/a><\/p>\r\n\r\n

Nizanski W, Levy X, Ochota M and Pasikowska J, 2014. Pharmacological treatment for common prostatic conditions in dogs- benign prostatic hyperplasia and prostatitis: An update. Reprod Domest Anim, 49(2): 8-15, doi: 10.1111\/rda.12297<\/a><\/p>\r\n\r\n

Palmieri C, Fonseca-Alves CE and Laufer-Amorim R, 2022. A review on canine and feline prostate pathology. <\/em>Front Vet Sci, 9: 881232, doi: 10.3389\/fvets.2022.881232<\/a><\/p>\r\n\r\n

Pinheiro D, Machado J, Viegas C, Baptista C and Bastos E, 2017. Evaluation of biomarker canine-prostate specific arginine esterase (CPSE) for the diagnosis of benign prostatic hyperplasia. BMC Vet Res, 13(1): 76, doi: 10.1186\/s12917-017-0996-5<\/a><\/p>\r\n\r\n

Przadka P, Liszka B, Piatek A, Skrzypczak P and Dzimira S, 2019. Total prostatectomy combined with urethral anastomosis in a dog: A case report. Vet Med, 64: 280-286, doi: 10.17221\/134\/2018-VETMED<\/a><\/p>\r\n\r\n

Sun F, Bae-Diaz C and Sanchez-Margallo FM, 2017. Canine prostate models in preclinical studies of minimally invasive interventions: part II, benign prostatic hyperplasia models. Transl Androl Urol, 6: 547-555, doi: 10.21037\/tau.2017.03.62<\/a><\/p>\r\n\r\n

Zambelli D, Ballotta G, Valentini S and Cunto M, 2022. Total perineal prostatectomy: A retrospective study in six dogs. Animals, 12(2): 200, doi: 10.3390\/ani12020200<\/a><\/p>\r\n","corresponding_author_email":"sulkhs.vet@gmail.com","received_date":"2024-04-13","accepted_date":"2024-07-11","published_date":"2024-07-21","citation":"Sulekha, Kumar S, Jangir BL, Deepika, Niwas R and Tiwari DK, 2024. Clinico-pathological study and surgical management of benign prostatic hyperplasia with perineal hernia in a dog. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2024.05724","pageNumber":"","number_view":"49","snippet":"057-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.05724-315","author":"","is_show":"Y","feature_view":"Y"},{"id":"321","issue_id":"0","doi_number":"10.36062\/ijah.2024.04024","title":"Production, characterization and bio functionalities of bioactive peptides from non-bovine species of milk: A review","description":"

Abstract<\/strong><\/p>\r\n\r\n

The exploration of bioactive peptides derived from non-bovine milk has garnered considerable interest due to their potential health-promoting properties and functional applications. This review provides an overview of production, characterization, and biofunctionalities of bioactive peptides obtained from various non-bovine milk sources, including but not limited to goat, sheep, buffalo, and camel milk. The production methods involve enzymatic hydrolysis or fermentation of milk proteins using proteolytic enzymes as trypsin, pepsin, and chymosin, among others or by using different cultures. Subsequently, various separation and purification techniques are employed to isolate the bioactive peptides, including ultrafiltration, chromatography and membrane separation. The structures of the bioactive peptides are identified and clarified through the use of characterization techniques such as nuclear magnetic resonance (NMR) spectroscopy, high-performance liquid chromatography (HPLC) and mass spectrometry. These peptides exhibit diverse biological activities, including antioxidant, antimicrobial, antihypertensive, immunomodulatory and opioid-like properties, among others. Furthermore, the bioactive peptides derived from non-bovine milk have demonstrated potential health benefits, such as reducing blood pressure, enhancing immune function, promoting gut health and exerting anti-inflammatory effects. Additionally, they find applications in functional foods, nutraceuticals and pharmaceutical formulations aimed at improving human health and wellbeing.<\/strong><\/p>\r\n","keywords":"Bioactive peptides, Biofunctionalities, Fermentation, Lactic acid bacteria, Non-bovine milk ","article_type":"1","status":"Y","price_status":"F","reference":"

Ahmad G, Almasry M, Dhillon AS, Abuayyash MM, Kothandaraman N et al<\/em>., 2017. Overview and Sources of Reactive Oxygen Species (ROS) in the Reproductive System. In: Agarwal, A., et al.<\/em> Oxidative Stress in Human Reproduction. Springer, Cham, doi: 10.1007\/978-3-319-48427-3_1<\/a><\/p>\r\n\r\n

Ahmed AS, El-Bassiony T, Elmalt LM and Ibrahim HR, 2015. Identification of potent antioxidant bioactive peptides from goat milk proteins. Food Res Int, 74: 80-88, doi: 10.1016\/j.foodres.2015.04.032<\/a><\/p>\r\n\r\n

Alferez MJM, Aliaga IL, Barrionuevo M and Campos MS, 2003. Effect of dietary inclusion of goat milk on the bioavailability of zinc and selenium in rats. Journal Dairy Res, 70(2): 181-187, doi: 10.1017\/S0022029903006058<\/a><\/p>\r\n\r\n

Alhaj OA, 2017. Identification of potential ACE-inhibitory peptides from dromedary fermented camel milk. CyTA J Food, 15(2): 191-195, doi: 10.1080\/19476337.2016.1236353<\/a><\/p>\r\n\r\n

Alichanidis E, Moatsou G and Polychroniadou A, 2016. Composition and properties of non-cow milk and products. In Non-bovine Milk and Milk Products, pp 81-116, Academic Press, doi: 10.1016\/B978-0-12-803361-6.00005-3<\/a><\/p>\r\n\r\n

Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K et al<\/em>., 2002. Methods for testing antioxidant activity. Analyst, 127(1): 183-198, doi: 10.1039\/B009171P<\/a><\/p>\r\n\r\n

Aslam MZ, Shoukat S, Hongfei Z and Bolin Z, 2019. Peptidomic analysis of ACE inhibitory peptides extracted from fermented goat milk. Int J Pept Res Ther, 25: 1259-1270, doi: 10.1007\/s10989-018-9771-0<\/a><\/p>\r\n\r\n

Aviel-Ronen S, Lau SK, Pintilie M, Lau D, Liu N et al<\/em>., 2008. Glypican-3 is overexpressed in lung squamous cell carcinoma, but not in adenocarcinoma. Mod Pathol, 21(7): 817-825, doi: 10.1038\/modpathol.2008.37<\/a><\/p>\r\n\r\n

Bafna S, Kaur S and Batra SK, 2010. Membrane-bound mucins: The mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 29(20): 2893-2904, doi: 10.1038\/onc.2010.87<\/a><\/p>\r\n\r\n

Bakry IA, Yang L, Farag MA, Korma SA, Khalifa I et al<\/em>., 2021. A comprehensive review of the composition, nutritional value and functional properties of camel milk fat. Foods, 10(9): 2158, doi: 10.3390\/foods10092158<\/a><\/p>\r\n\r\n

Balthazar CF, Pimentel TC, Ferrão LL, Almada CN, Santillo A et al<\/em>., 2017. Sheep milk: physicochemical characteristics and relevance for functional food development. Compr Rev Food Sci Food Saf, 16(2): 247-262, doi: 10.1111\/1541-4337.12250<\/a><\/p>\r\n\r\n

Barlowska J, Szwajkowska M, Litwi?czuk Z and Król J, 2011. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr Rev Food Sci Food Saf, 10(6): 291-302, doi: 10.1111\/j.1541-4337.2011.00163.x<\/a><\/p>\r\n\r\n

Barrionuevo M, Aliaga L, Alférez MJ, Mesa E, Nestáres T et al<\/em>., 2003. Beneficial effect of goat milk on bioavailability of copper, zinc and selenium in rats. J Physiol Biochem, 59(2): 111-118, doi: 10.1007\/bf03179876<\/a> <\/p>\r\n\r\n

Beltrami L, Zingale LC, Carugo S and Cicardi M, 2006. Angiotensin-converting enzyme inhibitor-related angioedema: how to deal with it. Expert Opin drug Saf, 5(5): 643-649, doi: 10.1517\/14740338.5.5.643<\/a><\/p>\r\n\r\n

Bhattarai RR, 2012. Importance of goat milk. J Food Sci Technol Nepal, 7: 107-111, doi: 10.3126\/jfstn.v7i0.11209<\/a><\/p>\r\n\r\n

Brumini D, Criscione A, Bordonaro S, Vegarud GE, Marletta D et al<\/em>., 2016. Whey proteins and their antimicrobial properties in donkey milk: A brief review. Dairy Sci Technol, 96: 1-14, doi: 10.1007\/s13594-015-0246-1<\/a><\/p>\r\n\r\n

Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Lagana A et al<\/em>., 2016. Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal Bioanal Chem, 408: 2677-2685<\/p>\r\n\r\n

Ceballos LS, Morales ER, de la Torre Adarve G, Castro JD, Martínez LP et al<\/em>., 2009. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J Food Comp Anal, 22(4): 322-329, doi: 10.1016\/j.jfca.2008.10.020<\/a><\/p>\r\n\r\n

Chia J, Burrow K, Carne A, McConnell M, Samuelsson L et al<\/em>., 2017. Minerals in sheep milk. In: Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Elsevier: Amsterdam, The Netherlands. Chapter 27, pp 345-362, doi: 10.1016\/B978-0-12-809762-5.00027-9<\/a><\/p>\r\n\r\n

Chiangjong W, Chutipongtanate S and Hongeng S, 2020. Anticancer peptide: physicochemical property, functional aspect and trend in clinical application. Int J Oncol, 57(3): 678-696, doi: 10.3892\/ijo.2020.5099<\/a><\/p>\r\n\r\n

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD et al<\/em>., 2018. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 138: 271-281, doi: 10.1016\/j.diabres.2018.02.023<\/a><\/p>\r\n\r\n

Claeys WL, Verraes C, Cardoen S, De Block J, Huyghebaert A et al<\/em>., 2014. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control, 42: 188-201, doi: 10.1016\/j.foodcont.2014.01.045<\/a><\/p>\r\n\r\n

Contreras F, de la Parte MA, Cabrera J, Ospino N, Israili ZH et al<\/em>., 2003. Role of angiotensin II AT1 receptor blockers in the treatment of arterial hypertension. Am J Ther, 10(6): 401-408, doi: 10.1097\/00045391-200311000-00005<\/a><\/p>\r\n\r\n

Coppola R, Salimei E, Succi M, Sorrentino E, Nanni M et al<\/em>., 2002. Behaviour of Lactobacillus rhamnosus<\/em> strains in ass's milk. Annal Microbiol, 52(1): 55-60<\/p>\r\n\r\n

Correa APF, Daroit DJ, Coelho J, Meira SM, Lopes FC et al<\/em>., 2011. Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. J Sci Food Agric, 91(12): 2247-2254, doi: 10.1002\/jsfa.4446<\/a><\/p>\r\n\r\n

Crowley SV, Kelly AL, Lucey JA and O'Mahony JA, 2017. Potential Applications of Non-Bovine Mammalian Milk in Infant Nutrition. In: Handbook of Milk of Non- Bovine Mammals, pp 625-654, doi: 10.1002\/9781119110316.ch13<\/a><\/p>\r\n\r\n

DePeters EJ and Ferguson JD, 1992. Nonprotein nitrogen and protein distribution in the milk of cows. J Dairy Sci, 75(11): 3192-3209, doi: 10.3168\/jds.S0022-0302(92)78085-0<\/a><\/p>\r\n\r\n

Dharmaraja AT, 2017. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem, 60(8): 3221-3240, doi: 10.1021\/acs.jmedchem.6b01243<\/a><\/p>\r\n\r\n

Ehlayel MS, Hazeima KA, Al-Mesaifri F and Bener A, 2011. Camel milk: An alternative for cow's milk allergy in children. In: Allergy Asthma Proc (Vol. 32, No. 3, pp 255-258), doi: 10.2500\/aap.2011.32.3429<\/a><\/p>\r\n\r\n

Eigel WN, Butler JE, Ernstrom CA, Farrell Jr HM, Harwalkar VR et al<\/em>., 1984. Nomenclature of proteins of cow's milk: fifth revision. J Dairy Sci, 67(8): 1599-1631, doi: 10.3168\/jds.S0022-0302(84)81485-X<\/a><\/p>\r\n\r\n

Fadnes B, Rekdal Ø and Uhlin-Hansen L, 2009. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells. BMC Cancer, 9: 1-13, doi: 10.1186\/1471-2407-9-183<\/a><\/p>\r\n\r\n

FAO, 2022. Poimena Analysis and International Wool Textile Organisation. Available in: https:\/\/iwto.org\/wp-content\/uploads\/2022\/04\/IWTO-Market-Information-Sample-Edition-17.pdf<\/a>  <\/p>\r\n\r\n

FAOSTAT. 2024(n.d.). Retrieved from https:\/\/www.fao.org\/faostat\/en\/#home<\/a> In-Text Citation: (“FAOSTAT,” n.d.)<\/p>\r\n\r\n

Gachons C and Breslin PA, 2016. Salivary amylase: digestion and metabolic syndrome. Curr Diab Rep, 16: 1-7, doi: 10.1007\/s11892-016-0794-7<\/a><\/p>\r\n\r\n

Gammoh S, Alu'datt MH, Tranchant CC, Alhamad MN, Rababah T et al<\/em>., 2020. Modification of the functional and bioactive properties of camel milk casein and whey proteins by ultrasonication and fermentation with Lactobacillus delbrueckii<\/em> subsp. lactis<\/em>. LWT, 129: 109501, doi: 10.1016\/j.lwt.2020.109501<\/a><\/p>\r\n\r\n

Gomez-Ruiz JÁ, López-Expósito I, Pihlanto A, Ramos M, Recio I et al<\/em>., 2008. Antioxidant activity of ovine casein hydrolysates: identification of active peptides by HPLC–MS\/MS. European Food Res Technol, 227: 1061-1067, doi: 10.1007\/s00217-008-0820-3<\/a><\/p>\r\n\r\n

Gomez-Ruiz JÁ, Ramos M and Recio I, 2007. Identification of novel angiotensin-converting enzyme-inhibitory peptides from ovine milk proteins by CE-MS and chromatographic techniques. Electrophoresis, 28(22): 4202-4211, doi: 10.1002\/elps.200700324<\/a><\/p>\r\n\r\n

Gong H, Gao J, Wang Y, Luo QW, Guo KR et al<\/em>., 2020. Identification of novel peptides from goat milk casein that ameliorate high-glucose-induced insulin resistance in HepG2 cells. J Dairy Sci, 103(6): 4907-4918l, doi: 10.3168\/jds.2019-17513<\/a><\/p>\r\n\r\n

Gruden S and Poklar Ulrih N, 2021. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int J Mol Sci, 22(20): 11264, doi: 10.3390\/ijms222011264<\/a><\/p>\r\n\r\n

Gul W, Farooq N, Anees D, Khan U, Rehan F et al<\/em>., 2015. Camel milk: A boon to mankind. Int J Res Stud Biosci, 3: 23-29<\/p>\r\n\r\n

Habib HM, Ibrahim WH, Schneider-Stock R and Hassan HM, 2013. Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem, 141(1): 148-152, doi: 10.1016\/j.foodchem.2013.03.039<\/a><\/p>\r\n\r\n

Harris F, Dennison SR, Singh J and Phoenix DA, 2013. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev, 33(1): 190-234, doi: 10.1002\/med.20252<\/a><\/p>\r\n\r\n

Haskito AEP, Mahdi C, Padaga MC and Roosdiana A, 2020. The effect of goat milk yoghurt casein antioxidant activity on histopathology of lung in male Rattus norvegicus exposed by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). In J Physics: Conference Series (Vol. 1430, No. 1, pp 012010), IOP Publishing, doi: 10.1088\/1742-6596\/1430\/1\/012010<\/a><\/p>\r\n\r\n

Hati S, Patel N and Mandal S, 2018. Comparative growth behaviour and biofunctionality of lactic acid bacteria during fermentation of soy milk and bovine milk. Prob Antimicrob Proteins, 10: 277-283, doi: 10.1007\/s12602-017-9279-5<\/a><\/p>\r\n\r\n

Herrouin M, Mollé D, Fauquant J, Ballestra F, Maubois JL et al<\/em>., 2000. New genetic variants identified in donkey's milk whey proteins. J Protein Chem, 19: 105-116, doi: 10.1023\/A:1007078415595<\/a><\/p>\r\n\r\n

Homayouni-Tabrizi M, Asoodeh A and Soltani M, 2017. Cytotoxic and antioxidant capacity of camel milk peptides: effects of isolated peptide on superoxide dismutase and catalase gene expression. J Food Anal, 25(3): 567-575, doi: 10.1016\/j.jfda.2016.10.014<\/a><\/p>\r\n\r\n

Iram D, Sansi MS, Zanab S, Vij S, Ashutosh et al<\/em>., 2022. In silico<\/em> identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins- A molecular docking study. J Food Biochem, 46(11): e14137, doi: 10.1111\/jfbc.14137<\/a><\/p>\r\n\r\n

Izadi A, Khedmat L and Mojtahedi SY, 2019. Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J Funct Foods, 60: 103441, doi: 10.1016\/j.jff.2019.103441<\/a><\/p>\r\n\r\n

Jiang J, Chen S, Ren F, Luo Z and Zeng SS, 2007. Yak milk casein as a functional ingredient: preparation and identification of angiotensin-I-converting enzyme inhibitory peptides. J Dairy Res, 74(1): 18-25, doi: 10.1016\/j.jff.2019.103441<\/a><\/p>\r\n\r\n

Jilo K and Tegegne D, 2016. Chemical composition and medicinal values of camel milk. Int J Res Stud Biosci, 4(4): 13-25<\/p>\r\n\r\n

Jodhani K, Basaiawmoit B, Sakure A, Das S, Hati S et al<\/em>., 2022. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk. J Food Sci Technol, 59(11): 4262-4272, doi: 10.1007\/s13197-022-05493-2<\/a><\/p>\r\n\r\n

Kapila R, Kavadi PK and Kapila S, 2013. Comparative evaluation of allergic sensitization to milk proteins of cow, buffalo and goat. Small Rumin Res, 112(1-3): 191-198, doi:10.1016\/j.smallrumres.2012.11.028<\/a><\/p>\r\n\r\n

Kie?czewska K, Jankowska A, D?browska A, Wachowska M, Ziajka J et al<\/em>., 2020. The effect of high pressure treatment on the dispersion of fat globules and the fatty acid profile of caprine milk. Int Dairy J, 102: 104607, doi:10.1016\/j.idairyj.2019.104607<\/a><\/p>\r\n\r\n

Kitts DD and Weiler K, 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des, 9(16): 1309-1323, doi: 10.2174\/1381612033454883<\/a><\/p>\r\n\r\n

Koksal Z, Gulcin I and Ozdemir H, 2016. An important milk enzyme: lactoperoxidase. Milk Proteins-From Structure to Biological Properties and Health Aspects, pp 141-156<\/p>\r\n\r\n

Kompan D and Komprej A, 2012. The effect of fatty acids in goat milk on health. In Milk production- An up-to-date Overview of Animal Nutrition, Management and Health. Intech Open, doi: 10.5772\/50769<\/a><\/p>\r\n\r\n

Krentz AJ and Bailey CJ, 2005. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs, 65: 385-411, doi: 10.2165\/00003495-200565030-00005<\/a><\/p>\r\n\r\n

Kumar A and Sharma A, 2016. Nutritional and medicinal superiority of goat milk over cow milk in infants. Int J Pediatric Nurs, 2(1): 47-50<\/p>\r\n\r\n

Lammi C, Zanoni C, Arnoldi A and Vistoli G, 2016. Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: In vitro<\/em> biochemical screening and in silico<\/em> molecular modeling study. J Agric Food Chem, 64(51): 9601-9606, doi: 10.1021\/acs.jafc.6b04041<\/a><\/p>\r\n\r\n

Lee SH and Jeon YJ, 2013. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia, 86: 129-136, doi: 10.1016\/j.fitote.2013.02.013<\/a><\/p>\r\n\r\n

Leong A, Liu Z, Almshawit H, Zisu B, Pillidge C et al<\/em>., 2019. Oligosaccharides in goats’ milk-based infant formula and their prebiotic and anti-infection properties. Br J Nutr, 122(4): 441-449, doi: 10.1017\/S000711451900134X<\/a><\/p>\r\n\r\n

Li J, Liu S, Lakshminarayanan R, Bai Y, Pervushin K et al<\/em>., 2013. Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability. Biochim Biophys Acta Biomembr, 1828(3): 1112-1121, doi: 10.1016\/j.bbamem.2012.12.015<\/a><\/p>\r\n\r\n

Li Y, Ma Q, Liu G and Wang C, 2022. Effects of donkey milk on oxidative stress and inflammatory response. J Food Biochem, 46(4): e13935, doi: 10.1111\/jfbc.13935<\/a><\/p>\r\n\r\n

Loboda D, Koz?owski H and Rowi?ska-?yrek M, 2018. Antimicrobial peptide- metal ion interactions- A potential way of activity enhancement. New J Chem, 42(10): 7560-7568, doi: 10.1039\/C7NJ04709F<\/a><\/p>\r\n\r\n

Madhusudan NC, Ramachandra CD, Udaykumar ND, Sharnagouda HD, Nagraj ND et al<\/em>., 2017. Composition, characteristics, nutritional value and health benefits of donkey milk- A review. Dairy Science and Technology, EDP sciences\/Springer<\/p>\r\n\r\n

Majumder K and Wu J, 2014. Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Inter J Mol Sci, 16(1): 256-283, doi: 10.3390\/ijms16010256<\/a><\/p>\r\n\r\n

Makrilakis K, 2019. The role of DPP-4 inhibitors in the treatment algorithm of type 2 diabetes mellitus: when to select, what to expect. Inter J Environ Res Public Health, 16(15): 2720, doi: 10.3390\/ijerph16152720<\/a><\/p>\r\n\r\n

Manaer T, Yu L, Zhang Y, Xiao XJ, Nabi XH et al<\/em>., 2015. Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin. J Ethnopharmacol, 169: 269-274, doi: 10.1016\/j.jep.2015.04.032<\/a><\/p>\r\n\r\n

Martini M, Altomonte I, Tricò D, Lapenta R, Salari F et al<\/em>., 2021. Current knowledge on functionality and potential therapeutic uses of donkey milk. Animals, 11(5): 1382, doi: 10.3390\/ani11051382<\/a><\/p>\r\n\r\n

Mati A, Senoussi-Ghezali C, Zennia SSA, Almi-Sebbane D, El-Hatmi H et al<\/em>., 2017. Dromedary camel milk proteins, a source of peptides having biological activities- A review. Int Dairy J, 73: 25-37, doi: 10.1016\/j.idairyj.2016.12.001<\/a><\/p>\r\n\r\n

May GL, Wright LC, Dyne M, MacKinnon WB, Fox RM et al<\/em>., 1988. Plasma membrane lipid composition of vinblastine sensitive and resistant human leukaemic lymphoblasts. Int J Cancer, 42(5): 728-733, doi: 10.1002\/ijc.2910420517<\/a><\/p>\r\n\r\n

Mehra R, Sangwan K and Garhwal R, 2021. Composition and therapeutic applications of goat milk and colostrum. Research and Reviews. J Dairy Sci Technol, 10(2): 1-7<\/p>\r\n\r\n

Meisel H and FitzGerald RJ, 2003. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des, 9(16): 1289-1296, doi: 10.2174\/1381612033454847<\/a><\/p>\r\n\r\n

Mellander OLOF, 1950. The physiologic importance of the casein phosphopeptide calcium salt, II: peroral calcium dosage of infants. Some aspects of the pathogenesis of rickets. Acta Soc Med Ups, 55: 247-255<\/p>\r\n\r\n

Muhialdin BJ and Algboory HL, 2018. Identification of low molecular weight antimicrobial peptides from Iraqi camel milk fermented with Lactobacillus plantarum<\/em>. Pharma Nutr, 6(2): 69-73, doi: 10.1016\/j.phanu.2018.02.002<\/a><\/p>\r\n\r\n

Naafs MA, 2018. The antimicrobial peptides: ready for clinical trials. Biomed J Sci Tech Res, 7: 001536, doi: 10.26717\/BJSTR.2018.07.001536<\/a><\/p>\r\n\r\n

NAAS, 2021. Potential of Non-Bovine Milk. Policy Paper No. 97, National Academy of Agricultural Sciences, New Delhi, pp 20<\/p>\r\n\r\n

Naveen J and Baskaran V, 2018. Antidiabetic plant-derived nutraceuticals: A critical review. Eur J Nutri, 57: 1275-1299, doi: 10.1007\/s00394-017-1552-6<\/a><\/p>\r\n\r\n

NDDB. Accessed September 23, 2021. https:\/\/www.nddb.coop\/ccnddb\/milk-facts<\/a><\/p>\r\n\r\n

Nguyen LT, Haney EF and Vogel HJ, 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 29(9): 464-472, doi: 10.1016\/j.tibtech.2011.05.001<\/a><\/p>\r\n\r\n

Nong NTP and Hsu JL, 2021. Characteristics of food protein-derived antidiabetic bioactive peptides: A literature update. Int J Mol Sci, 22(17): 9508, doi: 10.3390\/ijms22179508<\/a><\/p>\r\n\r\n

Nudda A, Atzori AS, Correddu F, Battacone G, Lunesu MF et al<\/em>., 2020. Effects of nutrition on main components of sheep milk. Small Rumin Res, 184: 106015, doi: 10.1016\/j.smallrumres.2019.11.001<\/a><\/p>\r\n\r\n

Papo N, Seger D, Makovitzki A, Kalchenko V, Eshhar Z et al<\/em>., 2006. Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense–like lytic peptide. Cancer Res, 66(10): 5371-5378, doi:10.1158\/0008-5472.CAN-05-4569<\/a><\/p>\r\n\r\n

Park YW and Haenlein GF, 2007. Goat milk, its products and nutrition. In: Handbook of food products manufacturing, pp 449-488, doi: 10.1002\/9780470113554.ch69<\/a><\/p>\r\n\r\n

Parmar H, Hati S, Panchal G and Sakure AA, 2020. Purification and production of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented goat milk. <\/p>\r\n\r\n

Int J Pept Res Ther, 26: 997-1011, doi: 10.1007\/s10989-019-09902-7<\/a><\/p>\r\n\r\n

Patel D, Basaiawmoit B, Sakure A, Das S, Maurya R et al<\/em>., 2021. Exploring potentials of antioxidative, anti-inflammatory activities and production of bioactive peptides in lactic fermented camel milk. Food Biosci, 44: 101404, doi: 10.1016\/j.fbio.2021.101404<\/a><\/p>\r\n\r\n

Pei J, Jiang H, Li X, Jin W and Tao Y, 2017. Antimicrobial peptides sourced from post-butter processing waste yak milk protein hydrolysates. AMB Express, 7: 1-6, doi: 10.1186\/s13568-017-0497-8<\/a><\/p>\r\n\r\n

Prosser CG, 2021. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J Food Sci, 86(2): 257-265, doi: 10.1111\/1750-3841.15574<\/a><\/p>\r\n\r\n

Rassin DK, Sturman JA and Gaull GE, 1978. Taurine and other free amino acids in milk of man and other mammals. Early Hum Dev, 2(1): 1-13, doi: 10.1016\/0378-3782(78)90048-8<\/a><\/p>\r\n\r\n

Reddy V, Urooj A and Kumar A, 2005. Evaluation of antioxidant activity of some plant extracts and their application in biscuits. Food Chem, 90(1-2): 317-321, doi: 10.1016\/j.foodchem.2004.05.038<\/a><\/p>\r\n\r\n

Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S et al<\/em>., 2011. In search of a novel target- Phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta, 1808(11): 2638-2645, doi: 10.1016\/j.bbamem.2011.07.026<\/a><\/p>\r\n\r\n

Rizzello CG, Losito I, Gobbetti M, Carbonara T, De Bari MD et al<\/em>., 2005. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci, 88(7): 2348-2360, doi: 10.3168\/jds.S0022-0302(05)72913-1<\/a><\/p>\r\n\r\n

Sansi MS, Iram D, Zanab S, Vij S, Puniya AK et al<\/em>., 2022. Antimicrobial bioactive peptides from goat milk proteins: in silico<\/em> prediction and analysis. J Food Biochem, 46(10): e14311, doi:  10.1111\/jfbc.14311<\/a><\/p>\r\n\r\n

Saravanan D and Mohammed Al-Kassim H, 2015. A review of potential anticancers from antimicrobial peptides. Inter J Pharm and Pharm Sci, 7(4): 19-26<\/p>\r\n\r\n

Sherbet GV, 1989. Membrane fluidity and cancer metastasis. Pathobiology, 57(4): 198-205, doi: 10.1159\/000163526<\/a><\/p>\r\n\r\n

Shori AB, 2015. Camel milk as a potential therapy for controlling diabetes and its complications: A review of in vivo<\/em> studies. J Food  Drug Anal, 23(4): 609-618, doi: 10.1016\/j.jfda.2015.02.007<\/a><\/p>\r\n\r\n

Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK et al<\/em>., 2023. Antidiabetic, angiotensin?converting enzyme inhibitory and anti?inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic?fermented camel milk with molecular interaction study. Int J Dairy Technol, 76(1): 149-167, doi:10.1111\/1471-0307.12910<\/a><\/p>\r\n\r\n

Shukla P, Sakure A, Pipaliya R, Basaiawmoit B, Maurya R et al<\/em>., 2022. Exploring the potential of Lacticaseibacillus paracasei<\/em> M11 on antidiabetic, anti?inflammatory, and ACE inhibitory effects of fermented dromedary camel milk (Camelus dromedaries<\/em>) and the release of antidiabetic and anti-hypertensive peptides. J Food Biochem, 46(12): e14449, doi:  10.1111\/jfbc.14449<\/a><\/p>\r\n\r\n

Singh BP, Rohit, Manju KM, Sharma R, Bhushan B et al<\/em>., 2023. Nano-conjugated food-derived antimicrobial peptides as natural biopreservatives: A review of technology and applications. Antibiotics, 12(2): 244, doi: 10.3390\/antibiotics12020244<\/a><\/p>\r\n\r\n

Singh BP, Vij S and Hati S, 2014. Functional significance of bioactive peptides derived from soybean. Peptides, 54: 171-179, doi: 10.1016\/j.peptides.2014.01.022<\/a><\/p>\r\n\r\n

Skoufos I, Tzora A, Giannenas I, Karamoutsios A, Tsangaris G et al<\/em>., 2017. Milk quality characteristics of Boutsiko, Frisarta and Karagouniko sheep breeds reared in the mountainous and semimountainous areas of Western and Central Greece. Int J Dairy Technol, 70(3): 345-353, doi: 10.1111\/1471-0307.12349<\/a><\/p>\r\n\r\n

Sohaib M, Anjum FM, Sahar A, Arshad MS, Rahman UU et al<\/em>., 2017. Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: A comprehensive review. Int J Food Prop, 20(11): 2581-2593, doi: 10.1080\/10942912.2016.1246456<\/a><\/p>\r\n\r\n

Sok M, Šentjurc M, Schara M, Stare J, Rott T et al<\/em>., 2002. Cell membrane fluidity and prognosis of lung cancer. Ann Thorac Surg, 73(5): 1567-1571, doi: 10.1016\/S0003-4975(02)03458-6<\/a><\/p>\r\n\r\n

Solanki D, Hati S and Sakure A, 2017. In silico<\/em> and in vitro<\/em> analysis of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented camel milk (Camelus dromedarius<\/em>). Int J Pept Res Ther, 23: 441-459, doi: 10.1007\/s10989-017-9577-5<\/a><\/p>\r\n\r\n

Sonu KS and Basavaprabhu HN, 2020. Compositional and therapeutic signatures of goat milk: A review. Int J Chem Stud, 8: 1013-1019, doi: 10.22271\/chemi.2020.v8.i2p.8902<\/a><\/p>\r\n\r\n

Sousa YR, Medeiros LB, Pintado MME and Queiroga RC, 2019. Goat milk oligosaccharides: composition, analytical methods and bioactive and nutritional properties. Trends Food Sci Technol, 92: 152-161, doi: 10.1016\/j.tifs.2019.07.052<\/a><\/p>\r\n\r\n

Srivastava A, Rao LJM and Shivanandappa T, 2012. A novel cytoprotective antioxidant: 4-Hydroxyisophthalic acid. Food Chem, 132(4): 1959-1965, doi: 10.1016\/j.foodchem.2011.12.032<\/a><\/p>\r\n\r\n

Teerasak E, Thongararm P, Roytrakul S, Meesuk L, Chumnanpuen P et al<\/em>., 2016. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica<\/em> mucus fractions. Comput Struct Biotechnol J, 14: 49-57, doi: 10.1016\/j.csbj.2015.11.005<\/a><\/p>\r\n\r\n

Thevenot J, Cauty C, Legland D, Dupont D, Floury J et al<\/em>., 2017. Pepsin diffusion in dairy gels depends on casein concentration and microstructure. Food Chem, 223: 54-61, doi: 10.1016\/j.foodchem.2016.12.014<\/a><\/p>\r\n\r\n

Thomas DL and Haenlein GFW, 2017. Production of sheep milk. In: Park YW, Haenlein GFW, Wendorff WL (Eds.), Handbook of Milk of non-Bovine Mammals, second edn. John Wiley Sons, Ltd, West Sussex, pp 181-209<\/p>\r\n\r\n

Tidona F, Criscione A, Guastella AM, Bordonaro S, Marletta D et al<\/em>., 2011. Gross composition and nutritional properties of donkey milk produced in Sicily. Scienza e Tecnica Lattiero-Casearia, 62(3): 217-221<\/p>\r\n\r\n

Tomazou M, Oulas A, Anagnostopoulos AK, Tsangaris GT, Spyrou GM et al<\/em>., 2019. In silico<\/em> identification of antimicrobial peptides in the proteomes of goat and sheep milk and feta cheese. Proteomes, 7(4): 32, doi: 10.3390\/proteomes7040032<\/a><\/p>\r\n\r\n

Tripaldi C, Martillotti F and Terramoccia S, 1998. Content of taurine and other free amino acids in milk of goats bred in Italy. Small Rumin Res, 30(2): 127-136, doi: 10.1016\/S0921-4488(98)00095-9<\/a><\/p>\r\n\r\n

Tsakalidou E and Papadimitriou K (Eds.), 2016. Non-bovine milk and milk products. Academic Press<\/p>\r\n\r\n

Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ et al<\/em>., 1991. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res, 51(11): 3062-3066<\/p>\r\n\r\n

Wang Y, Bekhit AED, Morton JD and Mason S, 2017. Nutritional value of deer milk. In Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 28: pp 363-375, doi: 10.1016\/B978-0-12-809762-5.00028-0<\/a><\/p>\r\n\r\n

Wendorff WL and Haenlein GF, 2017.  Sheep milk–composition and nutrition. In: Handbook of milk of non-bovine mammals, pp 210-221, doi: 10.1002\/9781119110316.ch3.2<\/a><\/p>\r\n\r\n

Wernery U, 2006. Camel milk, the white gold of the desert. J Camel Pract Res, 13(1): 15-26<\/p>\r\n\r\n

Wimley WC, 2010. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Bio, 5(10): 905-917, doi: 10.1021\/cb1001558<\/a><\/p>\r\n\r\n

WorldOStats, 2023. https:\/\/worldostats.com\/post\/goat-population-by-country 2023#:~:text=The%20global%20goat%20population%20stands,India%20%2D%20148%2C747%2C429  <\/p>\r\n\r\n

Xu G, Xiong W, Hu Q, Zuo P, Shao B et al<\/em>., 2010. Lactoferrin?derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa. J Appl Microbiol, 109(4): 1311-1318, doi: 10.1111\/j.1365-2672.2010.04751.x<\/a><\/p>\r\n\r\n

Yasmin I, Iqbal R, Liaqat A, Khan WA, Nadeem M et al<\/em>., 2020. Characterization and comparative evaluation of milk protein variants from pakistani dairy breeds. Food Sci Anim Res, 40(5): 689, doi: 10.5851\/kosfa.2020.e44<\/a><\/p>\r\n\r\n

Yassin MH, Soliman MM, Mostafa SAE and Ali HAM, 2015. Antimicrobial effects of camel milk against some bacterial pathogens. J Food Nutr Res, 3(3): 162-168, doi: 10.12691\/jfnr-3-3-6<\/a><\/p>\r\n\r\n

Zambrowicz A, Pokora M, Setner B, D?browska A, Szo?tysik M et al<\/em>., 2015. Multifunctional peptides derived from an egg yolk protein hydrolysate: isolation and characterization. Amino Acids, 47: 369-380, doi: 10.1007\/s00726-014-1869-x<\/p>\r\n\r\n

Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R et al<\/em>., 2020. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules, 25(24): 5763, doi:10.3390\/molecules25245763<\/a><\/p>\r\n\r\n

Zenezini Chiozzi R, Capriotti AL, Cavaliere C, La Barbera G, Piovesana S et al<\/em>., 2016. Purification and identification of endogenous antioxidant and ACE-inhibitory peptides from donkey milk by multidimensional liquid chromatography and nano HPLC-high resolution mass spectrometry. Anal Bioanal Chem, 408: 5657-5666, doi: 10.1007\/s00216-016-9672-z<\/a><\/p>\r\n\r\n

Zhang W, Wu S, Cao J, Li H, Li Y et al<\/em>., 2014. A preliminary study on anti-hypoxia activity of yak milk powder in vivo<\/em>. Dairy Sci Technol, 94: 633-639<\/p>\r\n\r\n

Zhang Y, Chen R, Ma H and Chen S, 2015. Isolation and identification of dipeptidyl peptidase IV-inhibitory peptides from trypsin\/chymotrypsin-treated goat milk casein hydrolysates by 2D-TLC and LC–MS\/MS. J Agric Food Chem, 63(40): 8819-8828, doi: 10.1021\/acs.jafc.5b03062<\/a><\/p>\r\n\r\n

Zou TB, He TP, Li HB, Tang HW, Xia EQ et al<\/em>., 2016. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 21(1): 72, doi: 10.3390\/molecules21010072<\/a><\/p>\r\n\r\n

Zwaal RF and Schroit AJ, 1997. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, 89(4): 1121-1132, doi: 10.1182\/blood.V89.4.1121<\/a><\/p>\r\n","corresponding_author_email":"subrota_dt@yahoo.com, subrota.hati@kamdhenuuni.edu.in","received_date":"2024-04-15","accepted_date":"2024-07-17","published_date":"2024-08-04","citation":"Vadher KR, Gawai KM, Singh BP, Sarkar P and Hati S, 2024. Production, characterization and bio functionalities of bioactive peptides from non-bovine species of milk: A review. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2024.04024","pageNumber":"","number_view":"67","snippet":"040-24-Rev.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.04024-321","author":"","is_show":"Y","feature_view":"Y"},{"id":"325","issue_id":"0","doi_number":"10.36062\/ijah.2024.06624","title":"Epidemiological studies and antifungal sensitivity pattern of clinical isolates of dermatophytes from localized cases of canine dermatophytosis","description":"

 Abstract<\/strong><\/p>\r\n\r\n

Dermatophytosis is one of the most common skin diseases in dogs caused by keratinophilic fungi of the family Arthrodermataceae. Dermatophytes of veterinary importance belong to genus Microsporum<\/em>, Trichophyton<\/em> and Epidermophyton<\/em>. Lesser treatment options and frequent use of non-prescription antifungal drugs resulted in development of resistance to the commonly used drugs. The research was conducted to study the epidemiology of cases of localized canine dermatophytosis and to assess the antifungal sensitivity pattern of the isolated organisms. Animals tentatively diagnosed with dermatophytosis based on the presence of endothrix or ectothrix on trichogram were selected for the study. Occurrence rate of dermatophytosis was 17.66% during the study period. The dermatophytes isolated in the current study were Microsporum canis<\/em>, Trichophyton mentagrophytes <\/em>and Microsporum gypseum.<\/em> The sensitivity pattern of the dermatophytes varied depending on the species isolated. Majority of the M. canis<\/em> isolates were mainly sensitive to nystatin, M. gypseum<\/em> to amphotericin B and T. mentagrophytes<\/em> to itraconazole, whereas resistance was shown by all three isolates against fluconazole. Statistically significant difference was noticed in the culture results obtained on two different fungal specific medias viz<\/em>, dermatophyte test medium and sabouraud dextrose agar.<\/strong><\/p>\r\n","keywords":"Canine, Dermatophytosis, Microsporum, Trichophyton","article_type":"2","status":"Y","price_status":"F","reference":"

Colombo S, Cornegliani L, Beccati M and Albanese F, 2010. Comparison of two sampling methods for microscopic examination of hair shafts in feline and canine dermatophytosis. Veterinaria, 24(3): 27-33<\/p>\r\n\r\n

Debnath C, Mitra T, Kumar A and Samanta I, 2016. Detection of dermatophytes in healthy companion dogs and cats in eastern India. Iran J Vet Res, 17(1): 20-24, doi: 10.22099\/IJVR.2016.3598<\/a><\/p>\r\n\r\n

Dogra S, Shaw D and Rudramurthy SM, 2019. Antifungal drug susceptibility testing of dermatophytes: laboratory findings to clinical implications. Indian Dermatol Online J, 10: 225-233, doi: 10.4103\/idoj.IDOJ_146_19<\/a><\/p>\r\n\r\n

Kaufmann R, Blum SE, Elad D and Zur G, 2016. Comparison between point-of-care dermatophyte test medium and mycology laboratory culture for diagnosis of dermatophytosis in dogs and cats. Vet Dermatol, 27(4): 284-290, doi: 10.1111\/vde.12322<\/a><\/p>\r\n\r\n

Klatte JL, van der Beek N and Kemperman PM, 2015. 100 years of Wood's lamp revised. J Eur Acad Dermatol Venereol, 29(5): 842-847, doi: 10.1111\/jdv.12860<\/a><\/p>\r\n\r\n

Malleswari T, Davis JK, Vinodkumar K, Vijayakumar K and Menon V, 2022. Occurrence of dermatophytosis in dogs from Thrissur, Kerala. J Vet Anim Sci, 53 (2): 322-327, doi: 10.51966\/jvas.2022.53.2.322-327<\/a><\/p>\r\n\r\n

Marchegiani A, Fruganti A, Spaterna A, Dalle Vedove E, Bachetti B et al<\/em>., 2020. Impact of nutritional supplementation on canine dermatological disorders. Vet Sci, 7(2): 38-52, doi: 10.3390\/vetsci7020038<\/a><\/p>\r\n\r\n

Moriello KA and Newbury S, 2006. Recommendations for the management and treatment of dermatophytosis in animal shelters. Vet Clin North Am Small Anim Pract, 36(1): 89-114, doi: 10.1016\/j.cvsm.2005.09.006<\/a><\/p>\r\n\r\n

Moriello KA, Coyner K, Paterson S and Mignon B, 2017. Diagnosis and treatment of dermatophytosis in dogs and cats. Clinical consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol, 28: 266-303, doi: 10.1111\/vde.12440<\/a><\/p>\r\n\r\n

Moskaluk AE and VandeWoude S, 2022. Current topics in dermatophyte classification and clinical diagnosis. Pathogens, 11(9): 957, doi: 10.3390\/pathogens11090957<\/a><\/p>\r\n\r\n

Salkin IF, Padhye AA and Kemma ME, 1997. A new medium for the presumptive, identification of dermatophytes. J Clin Microbiol, 35: 2660-2662, doi: 10.1128\/jcm.35.10.2660-2662.1997<\/a><\/p>\r\n\r\n

Scherer WP and Kinmon K, 2000. Dermatophyte test medium culture versus mycology laboratory analysis for suspected onychomycosis. A study of 100 cases in a geriatric population. J Am Podiatr Med Assoc, 90: 450-459, doi: 10.7547\/87507315-90-9-450<\/a><\/p>\r\n\r\n

Silver H, 2011. Dermatophytosis in cats and dogs. The Vet Nurse, 2(6): 310-316, doi: 10.12968\/VETN.2011.2.6.310<\/a><\/p>\r\n\r\n

Zineldar HA, Abouzeid NZ, Eisa MI, Bennour EM and Neshwy WME, 2023. Prevalence, clinical presentation, and therapeutic outcome of ectoparasitic infestations in dogs in Egypt. Open Vet J, 13(12): 1631-1644, doi: 10.5455\/OVJ.2023.v13.i12.13<\/a>   <\/p>\r\n","corresponding_author_email":"manjukm@kvasu.ac.in","received_date":"2024-05-08","accepted_date":"2024-08-07","published_date":"2024-08-20","citation":"Mathew MK, Madhavan Unny N, A. George A, Ajithkumar S, Ramnath V and Suja Rani S, 2024. Epidemiological studies and antifungal sensitivity pattern of clinical isolates of dermatophytes from localized cases of canine dermatophytosis. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2024.06624","pageNumber":"","number_view":"36","snippet":"066-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.06624-325","author":"","is_show":"Y","feature_view":"Y"},{"id":"329","issue_id":"0","doi_number":"10.36062\/ijah.2024.07824","title":"Delivery of monocephalic thoraco-omphalopagus monster through fetotomy in Murrah buffalo","description":"

Abstract <\/strong><\/p>\r\n\r\n

A pluriparous full-term pregnant Murrah buffalo was intermittently straining for last twelve hours but failed to deliver the foetus. Per-vaginal examination revealed six limbs along with one attachment at the level of cranial to pelvic indicating the monstrosity of the foetus. By fetotomy, monocephalic thoraco-omphalopagus tetra brachius tetrapus dicaudatus monster was delivered successfully.<\/strong><\/p>\r\n","keywords":"Buffalo, Dystocia, Fetotomy, Monocephalic, Monster","article_type":"3","status":"Y","price_status":"F","reference":"

Gahlod BM, Akhare SB, Sheetal SK and Dhakate MS, 2017. Dystocia due to monocephalic thoracopagus tetrabrachius tetrapus monster in Nagpuri buffalo - A rare case. Int J Sci Environ<\/em> Technol, 6(4): 2400-2404<\/p>\r\n\r\n

Gupta VK, Sharma P and Shukla SN, 2011. Dicephalus monster in a Murrah buffalo. Indian J Vet, 88(12): 72-73<\/p>\r\n\r\n

Kumar MK, Bhavani DS and Sreenu M, 2018. Dystocia due to monocephalus tetrabrachius tetrapus monster fetus in a doe: A case report. J Pharm Innov, 7(1): 574-575<\/p>\r\n\r\n

Kumar S, Pandey AK, Kushwaha RB, Sharma U and Dwivedi DK, 2014. Dystocia due to conjoined twin monster in a cow. Indian J Anim Reprod, 35(1): 54-56<\/p>\r\n\r\n

Megahed GA, 2015. Schistosomus reflexus syndrome in dairy Egyptian cow (Under publication study). J Dairy Vet Anim Res, 2: 45, doi: 10.15406\/jdvar.2015.02.00045<\/a><\/p>\r\n\r\n

Ravikumar K, Krishnakumar K, Napolean ER and Chandrahasan C, 2012. Per-vaginal delivery of a dicephalus dicaudatus xiphophagus monster. Indian J Anim Reprod, 33: 96-97<\/p>\r\n\r\n

Sachan V, Kumar B, Sonkar V and Saxena A, 2016. Monocephalic thoracopagus tetrabrachius tetrapus monster in Murrah buffalo- A case report. Buff Bull, 35(1): 23-26<\/p>\r\n\r\n

Singh G, Pal R, Dutt R and Chandolia RK, 2020. Monstrosities as a cause of dystocia- A study of 13 cases. Vet Pract, 21(1): 103-106<\/p>\r\n\r\n

Singh G, Pandey AK, Agnihotri D, Chander S, Chandolia RK et al<\/em>., 2013. Survival and fertility rate in buffaloes following caesarean section and mutation with\/without partial fetotomy. Indian J Anim Sci, 83: 251-253<\/p>\r\n\r\n

Vermunt J, 2019. Fetotomy. In Noakes DE, Parkinson TJ and England GCW (eds.) Veterinary Reproduction and Obstetrics. Saunders Elsevier, Oxford, Saunders Co. Ltd, London, United Kingdom, pp 278-302<\/p>\r\n","corresponding_author_email":"singh.avaneesh2005@gmail.com","received_date":"2024-05-30","accepted_date":"2024-08-25","published_date":"2024-10-03","citation":"Singh AK, Kumar M, Sachan V, Agrawal JK and Saxena A, 2024. Delivery of monocephalic thoraco-omphalopagus monster through fetotomy in Murrah buffalo. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2024.07824","pageNumber":"","number_view":"24","snippet":"078-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.07824-329","author":"","is_show":"Y","feature_view":"Y"},{"id":"331","issue_id":"0","doi_number":"10.36062\/ijah.2024.05224","title":"Arterial blood gas analysis in cardiac emergencies of dogs","description":"

Abstract<\/strong><\/p>\r\n\r\n

This attempt was made to study the prevalence of cardiac emergencies in canines and to analyze the changes in arterial blood gases, electrolytes and metabolites occurring as a result of these cardiac emergency conditions. Dogs presented to emergency and critical care unit were subjected for triage to identify the life-threatening cardiac emergency conditions. Diagnostic approaches included anamnesis, physical examination, ECG, and echocardiography followed by radiography and arterial blood gas, electrolyte and biochemistry analysis. Canine cardiac emergencies were 16 percent of the total emergency cases presented. Among them Dilated Cardiomyopathy (DCM) was common (46%), followed by arrhythmias (38%) and congestive heart failure and myocardial infarction (8% each). Respiratory alkalosis (75%) was the most common acid-base imbalance noted, followed by metabolic acidosis at (17%) and lastly mixed acidosis-alkalosis at (8%). Significant decrease in pCO2, bicarbonate and base excess were recorded. The observed electrolyte abnormalities were hypocalcemia (92%), hyponatremia (85%), hypokalemia (54%) and hypochloremia (46%). Metabolic abnormalities such as hyperglycemia, hyperlactatemia and azotemia (elevated BUN and creatinine) were also present in these cases.<\/strong><\/p>\r\n","keywords":"Arterial blood gas, Cardiac diseases, Critical care, DCM, pCO2","article_type":"2","status":"Y","price_status":"F","reference":"

Adams KF Jr, Fonarow GC, Emerman CL, LeJemtel TH and Costanzo MR, 2005. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J, 149(2): 209-216, doi: 10.1016\/j.ahj.2004.08.005<\/a><\/p>\r\n\r\n

Alper AB, Campbell RC, Anker SD, Bakris G, Wahle C et al<\/em>., 2009. A propensity-matched study of low serum potassium and mortality in older adults with chronic heart failure. Int J Cardiol, 137(1): 1-8, doi: 10.1016\/j.ijcard.2008.05.047<\/a><\/p>\r\n\r\n

Aronson D and Burger AJ, 2010. The relationship between transient and persistent worsening renal function and mortality in patients with acute decompensated heart failure. J Card Fail, 16(7): 541-547, doi: 10.1016\/j.cardfail.2010.02.001<\/a>  <\/p>\r\n\r\n

Boag AK and Hughes D, 2005. Assessment and treatment of perfusion abnormalities in the emergency patient. Vet Clin North Am Small Anim Pract, 35(2): 319-342, doi: 10.1016\/j.cvsm.2004.10.01<\/a>   <\/p>\r\n\r\n

Cook MJ and Rhodes A, 2008. Arterial blood gas analysis in acute heart failure syndrome. In: Acute Heart Failure (Mebazaa A, Gheorghiade M, Zannad FM, Parrillo JE, eds). Springer, London, doi: 10.1007\/978-1-84628-782-4_42<\/a><\/p>\r\n\r\n

Cooper LB, Mentz RJ, Gallup D, Lala A, DeVore AD et al<\/em>., 2016. Serum bicarbonate in acute heart failure: relationship to treatment strategies and clinical outcomes. J Card Fail, 22(9): 738-742, doi: 10.1016\/j.cardfail.2016.01.00<\/a><\/p>\r\n\r\n

Devi S, Jani RG, Anne FK and Singh RD, 2009. Study on clinical symptoms in canine cardiac diseases. Vet World, 2(8): 307-309<\/p>\r\n\r\n

Erling P and Mazzaferro EM, 2008. Left-sided congestive heart failure in dogs: pathophysiology and diagnosis. Compendium (Yardley, PA), 30(2): 79-91<\/p>\r\n\r\n

Friehs I, Moran A, Stamm C, Colan S, Takeuchi K et al<\/em>., 1999. Impaired glucose transporter activity in pressure-overload hypertrophy is an early indicator of progression to failure. Circulation, 100(19 Suppl): II 187-93, doi: 10.1161\/01.cir.100.suppl_2.ii-187<\/a><\/p>\r\n\r\n

Gabow PA, Kaehny WD, Fennessey PV, Goodman SI, Gross PA et al<\/em>., 1980. Diagnostic importance of an increased serum anion gap. N Engl J Med, 303(15): 854-858, doi: 10.1056\/NEJM198010093031505<\/a><\/p>\r\n\r\n

Gehlbach BK and Geppert E, 2004. The pulmonary manifestations of left heart failure. Chest, 125(2): 669-682, doi: 10.1378\/chest.125.2.669<\/a><\/p>\r\n\r\n

Hoque M, Saxena AC, Bashir M and Bodh D, 2019. Cardiac diseases in dogs. Indian J Anim Health, 58(1): 01-20, doi: 10.36062\/ijah.58.1.2019.01-20<\/a><\/p>\r\n\r\n

Jensen AC, Polcwiartek C, Sogaard P, Mortensen RN, Davidsen L et al<\/em>., 2019. The association between serum calcium levels and short-term mortality in patients with chronic heart failure. Am J Med, 132(2): 200-208, doi; 10.1016\/j.amjmed.2018.10.006<\/a>  <\/p>\r\n\r\n

Kuwahara T and Kawai C, 1992. Acid-base disturbances in heart failure. Nihon Rinsho, 50(9): 2173-2177<\/p>\r\n\r\n

MacPete R, 2018. Dogs and Heart Disease: An Overview. IDEXX Laboratories Inc<\/p>\r\n\r\n

Magder S and Emami A, 2015. Practical approach to physical-chemical acid-base management. Stewart at the bedside. Ann Am Thorac Soc, 12(1): 111-117, doi: 10.1513\/AnnalsATS.201409-426OI<\/a><\/p>\r\n\r\n

Nakano H, Nagai T, Honda Y, Honda S, Iwakami N et al<\/em>., 2020. Prognostic value of base excess as indicator of acid-base balance in acute heart failure. Euro Heart J Acute Cardiovasc Care, 9(5): 399-405, doi: 10.1177\/2048872619898781<\/a><\/p>\r\n\r\n

Natanzon A and Kronzon I, 2009. Pericardial and pleural effusions in congestive heart failure-anatomical, pathophysiologic, and clinical considerations. Am J Med Sci, 338(3): 211-216, doi: 10.1097\/MAJ.0b013e3181a3936f<\/a><\/p>\r\n\r\n

Paolisso G, Tagliamonte MR, Rizzo MR, Gambardella A, Gualdiero P et al<\/em>., 1999. Prognostic importance of insulin-mediated glucose uptake in aged patients with congestive heart failure secondary to mitral and\/or aortic valve disease. Am J Cardiol, 83(9): 1338-1344, doi: 10.1016\/s0002-9149(99)00097-1<\/a><\/p>\r\n\r\n

Rodriguez M, Hernandez M, Cheungpasitporn W, Kashani KB, Riaz I et al<\/em>., 2019. Hyponatremia in heart failure: pathogenesis and management. Curr Cardiol Rev, 15(4): 252-261, doi: https:\/\/doi.org\/10.2174\/1573403X15666190306111812<\/a><\/p>\r\n\r\n

Stanley WC and Chandler MP, 2002. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev, 7(2): 115-130, doi: 10.1023\/a:1015320423577<\/a><\/p>\r\n\r\n

Tidholm A and Jönsson L, 1997. A retrospective study of canine dilated cardiomyopathy (189 cases). J Am Anim Hosp Assoc, 33(6): 544-550, doi: 10.5326\/15473317-33-6-544<\/a><\/p>\r\n\r\n

Urso C, Brucculeri S and Caimi G, 2015. Acid-base and electrolyte abnormalities in heart failure: pathophysiology and implications. Heart Fail Rev, 20(4): 493-503, doi: 10.1007\/s10741-015-9482-y<\/a><\/p>\r\n\r\n

Winton FR, 1931. The influence of venous pressure on the isolated mammalian kidney. J Physiol, 72(1): 49-61, doi: 10.1113\/jphysiol.1931.sp002761<\/a><\/p>\r\n","corresponding_author_email":"vijayvet1985@gmail.com","received_date":"2024-04-05","accepted_date":"2024-09-05","published_date":"2024-10-03","citation":"Desouza HJ, Vijayakumar H, Ranjithkumar M and Kavitha S, 2024. Arterial blood gas analysis in cardiac emergencies of dogs. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2024.05224","pageNumber":"","number_view":"34","snippet":"052-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.05224-331","author":"","is_show":"Y","feature_view":"Y"},{"id":"332","issue_id":"0","doi_number":"10.36062\/ijah.2024.09824","title":"Therapeutic management of hepatozoonosis in a domestic dog in Nagaland, India- A case report","description":"

Abstract<\/strong><\/p>\r\n\r\n

An adult 3-year-old male non-descriptive dog, weighing 35<\/strong>.8 kg was presented at the Veterinary Clinical Complex, College of Veterinary Sciences and Animal Husbandry, Jalukie, Nagaland, with a history of weight loss and decreased appetite<\/strong>. The detailed clinical examination revealed tick infestation, elevated body temperature, swollen mandibular and popliteal nodes, ocular discharge and excessive salivation with a slightly pale mucous membrane<\/strong>. The dog was having the history of regular vaccination and deworming<\/strong>. Haematological findings indicated a slight reduction in the count of red blood cells with lymphocytosis<\/strong>. Microscopically, a blood smear examination revealed the presence of Hepatozoon<\/em> gamonts in neutrophils<\/strong>. The dog was treated with a combination of imidocarb dipropionate and oral doxycycline, along with other supportive supplements and fluid therapy<\/strong>. From this study, it can be concluded that combination therapy including imidocarb dipropionate and doxycycline along with supportive treatment like fluids, haematinic and liver tonics may be considered effective in relieving the clinical symptoms and clearing the blood of H<\/em><\/strong>. canis <\/em>gametocytes<\/strong>.<\/p>\r\n","keywords":"Doxycycline, Gamonts, Hepatozoon, Imidocarb dipropionate","article_type":"3","status":"Y","price_status":"F","reference":"

Baneth G, 2006. Hepatozoonosis. In: Infectious Diseases of the Dog and Cat. 3rd edn., C. E. Greene (edn.) W. B. Saunders, Philadelphia, Pensylvania, pp 698-705<\/p>\r\n\r\n

Baneth G, 2011. Perspectives on canine and feline hepatozoonosis. Vet Parasitol, 181: 3-11, doi: 10.1016\/j.vetpar.2011.04.015<\/a><\/p>\r\n\r\n

Baneth G, Harmelin A and Presentey BZ, 1995. Hepatozoon canis<\/em> infection in two dogs. J Am Vet Med Assoc, 206(12): 1891-1894<\/p>\r\n\r\n

Dantas-Torres, F and Otranto D, 2015. Further thoughts on the taxonomy and vector role of Rhipicephalus sanguineus <\/em>group ticks. Vet Parasitol, 208: 9-13, doi: 10.1016\/j.vetpar.2014.12.014<\/a><\/p>\r\n\r\n

Gevrey J, 1993. Hepatozoonose canine. Rev Med Vet, 169: 451-455<\/p>\r\n\r\n

Ivanov A and Tsachev I, 2008. Hepatozoon canis <\/em>and Hepatozoonosis in the dog. Trakia J Sci, 6(2): 27-35<\/p>\r\n\r\n

James SP, 1905. On a parasite found in the white corpuscles of the blood of dogs. Scientific Memoirs by the Officers of the Medical and Sanitary Departments of the Government of India, No.14, pp 1-12<\/p>\r\n\r\n

Karagenc TI, Pasa S, Kirli G, Hosgor M, Bilgic HB et al<\/em>., 2006. A parasitological, molecular and serological survey of Hepatozoon canis<\/em> infection in dogs around the Aegean coast of Turkey. Vet Parasitol, 135(2): 113-119, doi: 10.1016\/j.vetpar.2005.08.007<\/a><\/p>\r\n\r\n

Kumar T, Niddhi A and Rajora VS, 2012. Hepatozoonosis and its therapeutic management in a dog. Intas Polivet, 13(1): 138-139<\/p>\r\n\r\n

Kwon SJ, Kim YH, Oh HH and Choi US, 2017. First case of canine infection with Hepatozoon canis<\/em> (Apicomplexa: Haemogregarinidae) in the Republic of Korea. Korean J Parasitol, 55(5): 561-564, doi: 10.3347\/kjp.2017.55.5.561<\/a><\/p>\r\n\r\n

Mondal M, Maity A, Mandal D, Jana PS, Roy M et al<\/em>., 2021. Diagnosis and therapeutic management of Hepatozoonosis in dog. Int J Curr Microbiol App Sci, 10(08): 550-555, doi: 10.20546\/ijcmas.2021.1008.065<\/a><\/p>\r\n\r\n

Otranto D, Dantas-Torres F, Weigl S, Latrofa MS, Stanneck D et al<\/em>., 2011. Diagnosis of Hepatozoon canis <\/em>in young dogs by cytology and PCR. Parasit Vectors, 4: 55, doi: 10.1186\/1756-3305-4-55<\/a><\/p>\r\n\r\n

Rubini AS, dos Santos Paduan K, Lopes VVA and O’Dwyer LH, 2008. Molecular and parasitological survey of Hepatozoon canis <\/em>(Apicomplexa: Hepatozoidae) in dogs from rural area of Sao Paulo state, Brazil. Parasitol Res, 102(5): 895-899, doi: 10.1007\/s00436-007-0846-7<\/a><\/p>\r\n\r\n

Thakur N, Chethan GE, Akhilesh, Lekshman A, Kumari P et al<\/em>., 2018. Therapeutic management of Hepatozoon canis <\/em>induced acute hepatitis in a dog. J Entomol Zool Stud, 6(4): 1037-1039<\/p>\r\n\r\n

Wenyon CM, 1911. Oriental sore in Baghdad, together with observations on a gregarine in Stegomyia fasciata<\/em>, the haemoegregarine of dogs, and the flagellates of house flies. Parasitology, 4: 273-343<\/p>\r\n\r\n

Wu Y, Gao Y, Tian C, Li J, Wu L et al<\/em>., 2024. Identification of Rhipicephalus sanguineus<\/em> sensu lato infected with tick-borne pathogens from pet and stray dogs in Guangzhou, Southern China. Ticks Tick Borne Dis, 15(1): 102267,  doi: 10.1016\/j.ttbdis.2023.102267<\/a><\/p>\r\n","corresponding_author_email":"dasgunjan@gmail.com","received_date":"2024-07-29","accepted_date":"2024-09-14","published_date":"2024-10-03","citation":"Kuotsu K, Kuotsu N, Ozukum S, Chutia T, Laltlankimi, Bhumapati Dev N, Lalsangpuii, Begam R, Jusu GY and Das G, 2024. Therapeutic management of hepatozoonosis in a domestic dog in Nagaland, India- A case report. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2024.09824","pageNumber":"","number_view":"34","snippet":"098-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.09824-332","author":"","is_show":"Y","feature_view":"Y"},{"id":"341","issue_id":"0","doi_number":"10.36062\/ijah.2024.04224","title":"Immunomodulatory activity of Withania somnifera against Newcastle disease in Aseel chicken","description":"

Abstract<\/strong><\/p>\r\n\r\n

The regular outbreak of Newcastle disease (ND), irrespective of vaccination of Aseel chickens, results in huge economic loss to the farming community. Hence, the present study was conducted to evaluate the immunomodulatory activity of W<\/em>. somnifera<\/em> <\/strong>(Ashwagandha)<\/strong> root powder against ND and its effects on growth rate and oxidative status in Aseel chickens. <\/strong>One hundred chicks were randomly divided into 5 treatment groups, Control (T1), ND Vaccinated (T2), and ND Vaccinated + W<\/em>. somnifera<\/em> @ 0.25 % (T3), + <\/strong>W<\/em><\/strong>. somnifera - <\/em>0.5 % <\/strong>(T4) and + <\/strong>W<\/em><\/strong>. somnifera <\/em>- 1 % <\/strong>(T5) of ten birds each with <\/strong>one replicate respectively for four months<\/strong>. <\/strong>ND pellet vaccine was administered orally on 15th and 90th day. The <\/strong>hemagglutination inhibition (HI) test on different intervals, cell mediated immunity assessment through delayed cutaneous hypersensitivity test, <\/strong>leucogram analysis and, lymphoid organ weights were measured. T<\/strong>he antioxidant activity was calculated using superoxide dismutase and catalase enzymes estimation and production performance was also measured. The HI titers of <\/strong>T4 were<\/strong> 4.50±0.30, 3.50±0.30 and 5.17±0.42 on 45th, 90th and 112th day, respectively, which was<\/strong> significantly (P>0.05) higher <\/strong>on day 112 and higher mean skin thickness (<\/strong>P>0.05) <\/strong>and lymphoid organ weight also recorded. The additive effects like superior antioxidant activity and better production performance were also found in <\/strong>T4<\/strong> group. Hence, it was concluded that W<\/em>. somnifera <\/em>@ 0.50% could improve the disease resistance power of Aseel chicken against ND and the supplementation yields profit through better feed conversion ratio.<\/strong><\/p>\r\n","keywords":"Aseel Chicken, Immunity, Newcastle disease, Production performance, W. somnifera","article_type":"2","status":"Y","price_status":"F","reference":"

Abdu PA, Umoh JU, Abdullahi SU and Saidu L, 2001. Infectious Bursal Disease of poultry in Nigeria. Trop Vet, 19(4): 214-236, doi: 10.1007\/BF02250846<\/a><\/p>\r\n\r\n

Akotkar NS, Sarag AN, Rekhate DH and Dhok AP, 2007. Effect of supplementation of Ashwagandha (Withania somnifera)<\/em> on performance of broilers. Indian J Poult Sci, 42(1): 92-94<\/p>\r\n\r\n

Alexander DJ, 1988. Newcastle disease virus- An avian Paramyxovirus. 1st edn., Kluwar Academic pub, Boston, pp 11-22<\/p>\r\n\r\n

Azimi V, Mirakzehi MT and Saleh H, 2020. Hydroalcoholic extract of Withania somnifera <\/em>leaf and α-tocopherol acetate in diets containing oxidised oil: effects on growth performance, immune response, and oxidative status in broiler chickens. Ital J Anim Sci, 19(1):  917-928, doi: 10.1080\/1828051X.2020.1808537<\/a><\/p>\r\n\r\n

Bansal N, Renu Singh A, Deepika CAN, Mahajan K, Vinay A et al<\/em>., 2022. Prevalence of Newcastle disease virus in wild and migratory birds in Haryana, India. Avian Dis, 66(2): 141-147, doi: 10.1637\/aviandiseases-D-21-00115<\/a><\/p>\r\n\r\n

Barnes DA, Barlow R, Nigam PS and Owusu-Apenten RK, 2015. Antioxidant, anticancer and antibacterial activity of Withania somnifera<\/em> aqueous root extract. J Adv Biol Biotech, 5(1): 1-6, doi: 10.9734\/JABB\/2016\/22523<\/a><\/p>\r\n\r\n

Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC et al<\/em>., 2021.  Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother, 133: 110959, doi: 10.1016\/j.biopha.2020.110959<\/a><\/p>\r\n\r\n

Bhardwaj RK, Bhardwaj A and Gangwar SK, 2012. Efficacy of Ashwagandha (Withania somnifera<\/em>) supplementation on haematological and immunological parameters of Japanese quails. Int J Sci Nat, 3(2): 476-478<\/p>\r\n\r\n

Chang CC, Yang MH, Wen HM and Chern JC, 2002. Estimation of total flavonoid content in Propolis by two complementary colorimetric methods. J Food Drug Anal, 10(3): 178-182, doi: 10.38212\/2224-6614.2748<\/a><\/p>\r\n\r\n

Davis L and Kuttan G, 2000. Immunomodulatory activity of Withania Somnifera<\/em>. J Ethnopharmacol, 71(1-2): 193-200, doi: 10.1016\/s0378-8741(99)00206-8<\/a><\/p>\r\n\r\n

Duque AG and Descoteaux A, 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol, 5: 491, doi: 10.3389\/fimmu.2014.00491<\/a><\/p>\r\n\r\n

Ghosal S, Lal J, Srivastava R, Bhattacharya SK, Upadhyay SN et al<\/em>., 1989. Immunomodulatory and CNS effects of Sitoindosodes IX and X, two new glycowithanolides from Withania somnifera<\/em>. Phytother Res, 3: 201-206, doi: 10.1002\/ptr.2650030510<\/a><\/p>\r\n\r\n

 Harborne JB, 1973. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. London: Chapman and Hall, pp 84<\/p>\r\n\r\n

Haribabu Y,  Bhaskar SK, Prabhakar Rao P and Krishna A, 1993. Evaluation of cell mediated immune response in cattle affected with Rindepest using 2,4-Dinitro Chlorobenzene. Indian J Comp Microbiol, 14: 4-7<\/p>\r\n\r\n

Hu Z, He X, Deng J, Hu J and Liu X, 2022. Current situation and future direction of Newcastle disease vaccines. Vet Res, 53(1): 99, doi: 10.1186\/s13567-022-01118-w<\/a><\/p>\r\n\r\n

Jaiswal G, Kumar S and Prasad Y, 2014. Immunocompetence traits and their inheritance pattern in Kadaknath native chicken. Indian J Anim Res, 48(5): 509-512,  doi : 10.5958\/0976-0555.2014.00021.1<\/a><\/p>\r\n\r\n

Malarmathi M, Murali N, Selvaraju M, Sivakumar K, Gowthaman V et al<\/em>., 2023. In Vitro<\/em> characterization of chIFITMs of Aseel and Kadaknath chicken breeds against Newcastle disease virus infection. Biology, 12(7): 919, doi: 10.3390\/biology12070919<\/a><\/p>\r\n\r\n

OIE, 2012. Newcastle disease (Infection with Newcastle disease virus). In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees). Vol (1), Paris, France: OIE, pp 555-574<\/p>\r\n\r\n

Reetha TL, Rajeswar JJ, Harikrishnan TJ, Sukumar K, Srinivasan P et al<\/em>., 2016. Studies on the effectiveness of oral pellet vaccine in improving egg production and egg quality in desi chicken. Vet World, 9(8): 900-903, doi: 10.14202\/vetworld.2016.900-903<\/a><\/p>\r\n\r\n

Senthilnathan PR, Padmavathi SM, Banu and Sakthisekaran D, 2006. Enhancement of antitumor effect of paclitaxel in combination with immunomodulatory Withania somnifera<\/em> on benzopyrene induced experimental lung cancer. Chem Biol Interact, 159(3): 180-185, doi: 10.1016\/j.cbi.2005.11.003<\/a><\/p>\r\n\r\n

Singh B, Chandan BK and Gupta, DK, 2003. Adaptogenic activity of a novel withanolide-free aqueous fraction from the roots of Withania somnifera<\/em> Dun. (Part II). Phytother Res, 17(5): 531-556, doi: 10.1002\/ptr.1189<\/a><\/p>\r\n\r\n

Singleton VL, Orthofer R, Rosa M and Raventos L, 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent. Methods Enzymol,  299: 152-178, doi: 10.1016\/S0076-6879(99)99017-1<\/a><\/p>\r\n\r\n

Smith SE, Gibson MS, Wash RS, Ferrara F, Wright E et al<\/em>., 2013. Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro<\/em>.  J Virol, 87(23), 12957-12966, doi: 10.1128\/JVI.01443-13<\/a><\/p>\r\n\r\n

Snedecor GW and Cochran, WG, 2004. Statistical Methods. 8th edn., Iowa State University\/Ames, Iowa - 50010<\/p>\r\n\r\n

Surai PF, Kochish II, Fisinin VI and Kidd MT, 2019. Antioxidant defence systems and oxidative stress in poultry biology: An update.  Antioxid, 8(7): 235, doi: 10.3390\/antiox8070235<\/a><\/p>\r\n\r\n

Vikramachakravarthi P and Arivuchelvan A, 2023. Exploration of immunomodulatory and production performance activity of Allium sativum<\/em> and Withania somnifera<\/em> against Newcastle disease in desi birds. Indian J Poult Sci, 58(1): 57-61, doi: 10.5958\/0974-8180.2023.00007.7<\/a><\/p>\r\n\r\n

Vikramachakravarthi P and Selvaraju M, 2017. Comparative evaluation of xanthine oxidase inhibitory activity of Allium ceba <\/em>L., Azadirachta indica <\/em>A. Juss. and Piper betle<\/em> L. Ann Phytomed, 6(1): 132-135, doi: 10.21276\/ap.2017.6.1.20<\/a><\/p>\r\n\r\n

Vikramachakravarthi P, Murugesan S, Arivuchelvan A, Sukumar K, Arulmozhi A et al<\/em>., 2022. Therapeutic antigout and antioxidant activity of Piper betle<\/em> L. in gout-induced broilers. Br Poult Sci, 63(3): 324-331, doi: 10.1080\/00071668.2021.1998365<\/a><\/p>\r\n","corresponding_author_email":"drvikramvet@gmail.com","received_date":"2024-03-20","accepted_date":"2024-10-27","published_date":"2024-11-21","citation":"Vikramachakravarthi P, Arivuchelvan A and Jagadeeswaran A, 2024. Immunomodulatory activity of Withania somnifera against Newcastle disease in Aseel chicken. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2024.04224","pageNumber":"","number_view":"17","snippet":"042-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.04224-341","author":"","is_show":"Y","feature_view":"Y"},{"id":"346","issue_id":"0","doi_number":"10.36062\/ijah.2024.09024","title":"Ethnoveterinary approach in Lumpy Skin Disease (LSD): A review","description":"

Abstract<\/strong><\/p>\r\n\r\n

Research on treatments and cures for Lumpy Skin Disease (LSD) has significantly grown in India, where the condition is growing increasingly. The main focus of drug repurposing research is on conventional treatments. The disease is characterised by the skin’s eruption of nodules covering the entire body of the affected animal. The lesions are seen in the upper respiratory tract and mouth. Anorexia, pneumonia, pyrexia and dysgalactia are among the systemic effects. The disease causes loss to the farmer due to declined milk production, abortions, infertility, permanent damage to the hides, and occasional death. <\/strong>However, most of the antiviral drugs are synthetic small molecules, and antiviral plant-derived medicines are yet to be discovered for LSD. T<\/strong>he treatment of LSD with ethnoveterinary medicinal formulations has been suggested by the <\/strong>National Dairy Development Board (NDDB)<\/strong>. It included plants <\/strong>with various bioactive compounds having antioxidative, anti-inflammatory, immunomodulatory, analgesic, and antiviral properties. These <\/strong>ethnoveterinary medicinal formulations <\/strong>are proven superior when used singly or in combination with existing drugs to enhance the effectiveness of antivirals and increase their bioavailability. T<\/strong>he use of medicinal plants and their phytochemicals would relieve the suffering in animals. It can also be the right path for the creation of new affordable drugs through scientific studies.<\/strong><\/p>\r\n","keywords":"Cattle, LSD, Medicinal plants, Phytochemicals","article_type":"1","status":"Y","price_status":"F","reference":"

Aerts L, Haegeman A, De Leeuw I, Philips W, Van Campe W et al<\/em>., 2021. Detection of clinical and subclinical Lumpy Skin Disease using ear notch testing and skin biopsies. Microorganisms, 9(10): 2171, doi: 10.3390\/microorganisms9102171<\/a><\/p>\r\n\r\n

Akther M, Akter SH, Sarker S, Aleri JW, Annandale H et al<\/em>., 2023. Global burden of Lumpy Skin Disease, outbreaks, and future challenges. Viruses, 15(9): 1861, doi: 10.3390\/v15091861<\/a><\/p>\r\n\r\n

Alves MM, Brito LM, Souza AC, Queiroz BC, de Carvalho TP et al<\/em>., 2017. Gallic and ellagic acids: two natural immunomodulator compounds solve infection of macrophages by Leishmania major<\/em>. Naunyn Schmiedebergs Arch Pharmacol, 390(9): 893-903, doi: 10.1007\/s00210-017-1387-y<\/a> <\/p>\r\n\r\n

Amiri M, Jelodar GA, Erjaee H and Nazifi S, 2019. The effects of different doses of onion (Allium cepa<\/em>. L) extract on leptin, ghrelin, total antioxidant capacity, and performance of suckling lambs. Comp Clin Path, 28: 391-396, doi: 10.1007\/s00580-019-02910-5<\/a><\/p>\r\n\r\n

Ananthi S, Raghavendran HR, Sunil AG, Gayathri V, Ramakrishnan G et al<\/em>., 2010. In vitro<\/em> antioxidant and in vivo<\/em> anti-inflammatory potential of crude polysaccharide from Turbinaria ornata<\/em> (Marine Brown Alga). Food Chem Toxicol, 48(1): 187-92, doi: 10.1016\/j.fct.2009.09.036<\/a><\/p>\r\n\r\n

Andersen OM, Helland DE and Andersen KJ, 1997. Anthocyanidin and anthocyanidin derivatives, and their isolation, for treatment of cancer, diseases caused by lesions in connective tissues, and diseases caused by viruses. PCT Int Appl, 121<\/p>\r\n\r\n

Ashokkumar K, Murugan M, Dhanya MK, Pandian A and Warkentin TD, 2021. Phytochemistry and therapeutic potential of black pepper [Piper nigrum<\/em> (L.)] essential oil and piperine: A review. Clin Phytosci, 7: 52, doi: 10.1186\/s40816-021-00292-2<\/a><\/p>\r\n\r\n

Atanasov AG, Zotchev SB, Dirsch VM and Supuran CT, 2021. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov, 20(3): 200-216, doi: 10.1038\/s41573-020-00114-z<\/a><\/p>\r\n\r\n

Azeem S, Sharma B, Shabir S, Akbar H and Venter E, 2022. Lumpy Skin Disease is expanding its geographic range: A challenge for Asian livestock management and food security. Vet J, 279: 105785, doi: 10.1016\/j.tvjl.2021.105785<\/a> <\/p>\r\n\r\n

Babiuk S, 2018. Treatment of Lumpy Skin Disease. In: Lumpy Skin Disease. Springer, Cham, pp 81-81, doi: 10.1007\/978-3-319-92411-3_17<\/a> <\/p>\r\n\r\n

Behbahani BA, Noshad M and Falah F, 2019. Cumin essential oil: phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microb Pathog, 136: 103716, doi: 10.1016\/j.micpath.2019.103716<\/a><\/p>\r\n\r\n

Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC et al<\/em>., 2021. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother, 133: 110959, doi: 10.1016\/j.biopha.2020.110959<\/a><\/p>\r\n\r\n

Brunetti C, Di Ferdinando M, Fini A, Pollastri S and Tattini M, 2013. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci, 14(2): 3540-3455, doi: 10.3390\/ijms14023540<\/a><\/p>\r\n\r\n

Bunyapraphatsara N, Dechsree S, Yoosook C, Herunsalee A and Panpisutchai Y, 2000. Anti-herpes simplex virus component isolated from Maclura cochinchinensis<\/em>. Phytomedicine, 6(6): 421-424, doi: 10.1016\/S0944-7113(00)80069-0<\/a><\/p>\r\n\r\n

Chanda S and Ramachandra TV, 2019. Phytochemical and pharmacological importance of turmeric (Curcuma longa<\/em>): A review. RRJoP, 9(1): 16-23<\/p>\r\n\r\n

Chandra S, Palai S, Fagner Ferreira-Matias E, Cavalcante Pita-Neto I, Lucas Gomes-Ramalho CERO et al<\/em>., 2023. Indian medicinal plants are effective in the treatment and management of COVID-19. Biocell, 47(4): 677-695, doi: 10.32604\/biocell.2023.026081<\/a><\/p>\r\n\r\n

Chouhan CS, Parvin MS, Ali MY, Sadekuzzaman M, Chowdhury MGA et al<\/em>., 2022. Epidemiology and economic impact of Lumpy Skin Disease of cattle in Mymensingh and Gaibandha districts of Bangladesh. Transbound Emerg Dis, 69(6): 3405-3418, doi: 10.1111\/tbed.14697<\/a><\/p>\r\n\r\n

Cooper SJ and Bowden GT, 2007. Ultraviolet B regulation of transcription factor families: roles of nuclear factor-kappa B (NF-κappaB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis. Curr Cancer Drug Targets, 7(4): 325-34, doi: 10.2174\/156800907780809714<\/a><\/p>\r\n\r\n

Coria-Téllez AV, Montalvo-Gónzalez E, Yahia EM and Obledo-Vázquez EN, 2018. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab J chem, 11(5): 662-691<\/p>\r\n\r\n

Das S, Ray A, Nasim N, Nayak S and Mohanty S, 2019. Effect of different extraction techniques on total phenolic and flavonoid contents, and antioxidant activity of betelvine and quantification of its phenolic constituents by validated HPTLC method. 3 Biotech, 9(1): 1-8, doi: 10.1007\/s13205-018-1565-8<\/a><\/p>\r\n\r\n

Dehuri M, Palai S, Mohanty B and Malangmei L, 2021. Anti-helminthic activity of plant extracts against gastrointestinal nematodes in small ruminants- A review. Pharmacogn Rev, 15(30): 117-127, doi: 10.5530\/phrev.2021.15.14<\/a><\/p>\r\n\r\n

Giresha AS, 2021. Secretory Phospholipase A2 Group IIA: A Potential Therapeutic Target in Inflammation. Current Research and Trends in Medical Science and Technology, 1: 34-85<\/p>\r\n\r\n

Goud KS and Vijayakumar K, 2020. Lumpy Skin Disease in large ruminants-an emerging threat. Intas Polivet, 21(1): 1-8<\/p>\r\n\r\n

Gupta T, Patial V, Bali D, Angaria S, Sharma M et al<\/em>., 2020. A review: Lumpy Skin Disease and its emergence in India. Vet Res Commun, 44(3): 111-118, doi: 10.1007\/s11259-020-09780-1<\/a><\/p>\r\n\r\n

Jatav M, 2022. Chapter-4 Lumpy Skin Disease (LSD): An Emerging Trans-Boundary Viral Disease. Advances in Veterinary Sciences, 16: 39-50<\/p>\r\n\r\n

Kesh SS and Palai S, 2021. Roles of medicinal plants in the treatment of connective tissue diseases. In Phytochemistry, the Military and Health, Elsevier, pp 353-366, doi: 10.1016\/B978-0-12-821556-2.00027-X<\/a><\/p>\r\n\r\n

Krol W, Czuba ZP, Threadgill MD, Cunningham BD and Pietsz G, 1995. Inhibition of nitric oxide (NO.) production in murine macrophages by flavones. Biochem Pharmacol, 50(7): 1031-1035, doi: 10.1016\/0006-2952(95)00237-t<\/a><\/p>\r\n\r\n

Kshirsagar PR, Jagtap UB, Gaikwad NB and Bapat VA, 2019. Ethnopharmacology, phytochemistry and pharmacology of medicinally potent genus Swertia: An update. S Afr J Bot, 124: 444-83, doi: 10.1016\/j.sajb.2019.05.030<\/a><\/p>\r\n\r\n

Kumar P, Kumari RR, Devi S, Tripathi MK, Singh J et al<\/em>., 2021. Emergence and transboundary spread of Lumpy Skin Disease in South Asia. Indian J Anim Sci, 91 (7): 507-517, doi: 10.56093\/ijans.v91i7.115893<\/a> <\/p>\r\n\r\n

Lin LC, Kuo YC and Chou CJ, 2000. Anti-herpes simplex virus type-1 flavonoids and a new flavanone from the root of Limonium sinense<\/em>. Planta Med, 66(4): 333-336, doi: 10.1055\/s-2000-8540<\/a><\/p>\r\n\r\n

Loizzo MR, Saab A, Tundis R, Statti GA, Lampronti I et al<\/em>., 2008. Phytochemical analysis and in vitro<\/em> evaluation of the biological activity against herpes simplex virus type 1 (HSV-1) of Cedrus libani<\/em> A. Rich. Phytomedicine, 15(1-2): 79-83, doi: 10.1016\/j.phymed.2007.03.013<\/a><\/p>\r\n\r\n

Manandhar B, Paudel KR, Sharma B and Karki R, 2018. Phytochemical profile and pharmacological activity of Aegle marmelos<\/em> Linn. J Integr Med, 16(3): 153-163, doi: 10.1016\/j.joim.2018.04.007<\/a><\/p>\r\n\r\n

Mulatu E and Feyisa A, 2018. Review: Lumpy Skin Disease. J Vet Sci Technol, 9(535): 1-8<\/p>\r\n\r\n

Nworu CS and Akah PA, 2015. Anti-inflammatory medicinal plants and the molecular mechanisms underlying their activities. Afr J Tradit Complement Altern Med, 12: 52-61, doi: 10.4314\/ajtcam.v12i6.3S<\/a><\/p>\r\n\r\n

Oguntibeju OO, 2018. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J Inflamm Res, 11: 307-317, doi: 10.2147\/JIR.S167789<\/a><\/p>\r\n\r\n

Ounjaijean S, Chachiyo S, Kulprachakarn K, Boonyapranai K, Srichairatanakool S et al<\/em>., 2019. Antioxidant and anti-inflammatory protective properties of Thai shallot (Allium ascalonicum<\/em> cv. Chiangmai) juice on human vascular endothelial cell lines (EA. hy926). Walailak J Sci Technol (WJST), 16(3): 175-184, doi: 10.48048\/wjst.2019.6222<\/a><\/p>\r\n\r\n

Pal M and Gutama PK, 2023. Can Lumpy Skin Disease be considered a zoonosis? Am J Infect Dis Microbiol, 11: 13-17, doi: 10.12691\/ajidm-11-1-3<\/a><\/p>\r\n\r\n

Palai S and Rudrapal M, 2023. Functional Foods, Herbal Supplements and Nutraceuticals in the Management of Coronavirus Disease-2019 (COVID-19). In: Medicinal Plants, Phytomedicines and Traditional Herbal Remedies for Drug Discovery and Development against COVID-19. Bentham Science Publishers, pp 200-218<\/p>\r\n\r\n

Palai S, Kesh SS, Awuchi CG, Abdulrahman, SA and Egbuna C, 2021. Role of Phytochemicals in the Treatment of Ectoparasitic Infections: Scabies and Myiasis. In: Neglected Tropical Diseases and Phytochemicals in Drug Discovery, pp 477-498<\/p>\r\n\r\n

Parvin R, Chowdhury EH, Islam MT, Begum JA, Nooruzzaman M et al<\/em>.,<\/em> 2022. Clinical epidemiology, pathology, and molecular investigation of Lumpy Skin Disease outbreaks in Bangladesh during 2020-2021 indicate the re-emergence of an old African strain. Viruses, 14(11): 2529, doi: 10.3390\/v14112529<\/a><\/p>\r\n\r\n

Rahman MM, Mim SA, Tumpa MA, Sarker MT, Ahmed M et al<\/em>., 2022. Exploring the management approaches of cytokines including viral infection and neuroinflammation for neurological disorders. Cytokine, 157: 155962, doi: 10.1016\/j.cyto.2022.155962<\/a><\/p>\r\n\r\n

Ren Q and Song X, (2005). Use of a composition containing dihydromyricetin and myricetin in preparation of antiviral medicines. Faming Zhuanli Shenqing Gongkai Shuomingshu, 20: 33<\/p>\r\n\r\n

Sahukari R, Punabaka J, Bhasha S, Ganjikunta VS, Kondeti Ramudu S et al<\/em>., 2021. Phytochemical profile, free radical scavenging and anti-inflammatory properties of Acalypha Indica<\/em> root extract: evidence from in vitro<\/em> and in vivo<\/em> studies. Molecules, 26(20): 6251, doi: 10.3390\/molecules26206251<\/a><\/p>\r\n\r\n

Saqib SE, Yaseen M, Visetnoi S, Sikandar and Ali S, 2023. Epidemiological and economic consequences of Lumpy Skin Disease outbreaks on farm households in Khyber Pakhtunkhwa, Pakistan. Front Vet Sci, 10: 1238771, doi: 10.3389\/fvets.2023.1238771<\/a><\/p>\r\n\r\n

Senthilkumar S, Kuppusamy S, Baskar M, Vijayalatha KR, Jayavalli R et al<\/em>., 2024. Cultivating tomorrow: A review on biostimulants and their transformative role in agriculture. J Adv Biol Biotechnol, 27(8): 906-919, doi: 10.9734\/jabb\/2024\/v27i81211<\/a><\/p>\r\n\r\n

Shahrajabian MH, Sun W and Cheng Q, 2020. Chemical components and pharmacological benefits of Basil (Ocimum basilicum<\/em>): A review. Inter J Food Prop, 23(1): 1961-1970, doi: 10.1080\/10942912.2020.1828456<\/a> <\/p>\r\n\r\n

Singh N, Rao AS, Nandal A, Kumar S, Yadav SS et al<\/em>., 2021. Phytochemical and pharmacological review of Cinnamomum verum<\/em> J. Presl- A versatile spice used in food and nutrition. Food Chem, 338: 127773, doi: 10.1016\/j.foodchem.2020.127773<\/a><\/p>\r\n\r\n

Sprygin A, Pestova Y, Wallace DB, Tuppurainen E and Kononov AV, 2019. Transmission of Lumpy Skin Disease virus: A short review. Virus Res, 269: 197637, doi: 10.1016\/j.virusres.2019.05.015<\/a><\/p>\r\n\r\n

Sunila ES and Kuttan G, 2004. Immunomodulatory and antitumor activity of Piper longum<\/em> Linn. and piperine. J Ethnopharmacol, 90(2-3): 339-346, doi: 10.1016\/j.jep.2003.10.016<\/a><\/p>\r\n\r\n

Tuppurainen E, Alexandrov T and Beltrán-Alcrudo DJ, 2017. Lumpy Skin Disease- A Manual for Veterinarians. FAO Animal Production and Health Manual, 20<\/p>\r\n\r\n

Ullah A, Munir S, Badshah SL, Khan N, Ghani L et al<\/em>., 2020. Important flavonoids and their role as a therapeutic agent. Molecules, 25(22): 5243, doi: 10.3390\/molecules25225243<\/a>  <\/p>\r\n\r\n

Watson RR, Zibadi S and Preedy VR, 2010. Dietary Components and Immune Function. Springer Science and Business Media<\/p>\r\n\r\n

Wylie MR and Merrell DS, 2022. The antimicrobial potential of the neem tree Azadirachta indica<\/em>. Front Pharmacol, 13: 891535, doi: 10.3389\/fphar.2022.891535<\/a>  <\/p>\r\n","corresponding_author_email":"keshvbc@gmail.com","received_date":"2024-07-09","accepted_date":"2024-11-03","published_date":"2024-12-06","citation":"Palai S, Kesh SS and S. Biswas S, 2024. Ethnoveterinary approach in Lumpy Skin Disease (LSD): A review. Indian J Anim Health, DOI: https:\/\/doi.org\/10.36062\/ijah.2024.09024","pageNumber":"","number_view":"56","snippet":"090-24-Rev.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.09024-346","author":"","is_show":"Y","feature_view":"Y"},{"id":"347","issue_id":"0","doi_number":"10.36062\/ijah.2024.11424","title":"Assessing the producer\u2019s share in the consumer rupee: An analytical study of Rajbanshi dairy farmers","description":"

Abstract<\/strong><\/p>\r\n\r\n

This study examines the producer’s share in the consumer rupee (PSCR) among Rajbanshi dairy farmers in the Coochbehar district of West Bengal, focusing on the influence of socio-economic variables<\/strong>. Data were collected from 200 dairy farmers to determine the relationship between PSCR and factors such as age, educational status, milk production, extension contact and mass media exposure<\/strong>. The results indicate that the average selling price of milk by producers is ? 37<\/strong>.45, while the consumer price is ? 40<\/strong>.88, leading to a PSCR of 91<\/strong>.61%<\/strong>. Correlation analysis reveals significant associations between PSCR and key variables<\/strong>. Negative correlations were observed with market type, milk production and crossbreed ownership, while positive correlations were found with age and mass media exposure<\/strong>. The study suggests that socio-economic conditions and farm characteristics significantly influence PSCR, with more experienced farmers and those with better media access tending to secure a higher share<\/strong>. Additionally, the type of market and milk production levels play a crucial role in determining the share received by producers<\/strong>. The findings underscore the importance of improving market linkages, enhancing farmers' awareness and strengthening extension services to boost the earnings of smallholder dairy farmers<\/strong>.<\/p>\r\n","keywords":"Dairy Farming, Marketing, Price, Producer\u2019s share in consumer rupee (PSCR), Rajbanshi","article_type":"2","status":"Y","price_status":"F","reference":"

Anderson JR and Feder G, 2007. Agricultural extension. In: Handbook of Agricultural Economics, Vol: 3 (Evenson R,  Pingali<\/a> P, eds). Elsevier, pp 2343-2378<\/p>\r\n\r\n

Berti G and Mulligan C, 2016. Competitiveness of small farms and innovative food supply chains: The role of food hubs in creating sustainable regional and local food systems. Sustainability, 8(7): 616, doi: 10.3390\/su8070616<\/a><\/p>\r\n\r\n

Deepa MPM and Murthy PS, 2018. Economic analysis of direct marketing of jackfruit through institutional intervention in Bengaluru rural district. Indian J Agric Marketing, 32(3s): 129-135, doi: 10.5555\/20193429836<\/a><\/p>\r\n\r\n

Krueger E, Rao PSC and Borchardt D, 2019. Quantifying urban water supply security under global change. Global Environ Change, 56: 66-74, doi: 10.1016\/j.gloenvcha.2019.03.009<\/a><\/p>\r\n\r\n

Kumar KNR and Babu SC, 2021. Value chain management under COVID-19: responses and lessons from grape production in India. J Soc Econ Dev, 23(Suppl 3): 468-490, doi: 10.1007\/s40847-020-00138-6<\/a><\/p>\r\n\r\n

Liu T, Bruins RJ and Heberling MT, 2018. Factors influencing farmers’ adoption of best management practices: A review and synthesis. Sustainability, 10(2): 432, doi: 10.3390\/su10020432<\/a><\/p>\r\n\r\n

Lyson TA and Green J, 1999. The agricultural marketscape: A framework for sustaining agriculture and communities in the Northeast. J Sustain Agric, 15(2-3): 133-150, doi: 10.1300\/J064v15n02_12<\/a><\/p>\r\n\r\n

Nakandala D and Lau HC, 2019. Innovative adoption of hybrid supply chain strategies in urban local fresh food supply chain. Int J Supply Chain Manag, 24(1): 241-255, doi: 10.1108\/SCM-09-2017-0287<\/a><\/p>\r\n\r\n

Opitz I, Zoll F, Zasada I, Doernberg A, Siebert R et al<\/em>., 2019. Consumer-producer interactions in community-supported agriculture and their relevance for economic stability of the farm- An empirical study using an Analytic Hierarchy Process. J Rural Stud, 68: 22-32, doi: 10.1016\/j.jrurstud.2019.03.011<\/a><\/p>\r\n\r\n

Poulton C, Dorward A and Kydd J, 2010. The future of small farms: new directions for services, institutions, and intermediation. World Dev, 38(10): 1413-1428, doi: 10.1016\/j.worlddev.2009.06.009<\/a><\/p>\r\n\r\n

Satashia M and Pundir RS, 2021. Marketing efficiency of milk marketing channels in middle Gujarat and scope for its improvement. Indian J Agric Econ, 76(4): 594-604<\/p>\r\n\r\n

Scholten BA, 2007. Consumer Risk Reflections on Organic and Local Food in Seattle, with Reference to Newcastle Upon Tyne (Doctoral Dissertation, Durham University)<\/p>\r\n\r\n

Shokoohi Z, Chizari AH and Asgari M, 2019. Investigating bargaining power of farmers and processors in Iran's dairy market. J Agric Appl Econ, 51(1): 126-141, doi: 10.1017\/aae.2018.26<\/a><\/p>\r\n\r\n

Staal SJ, Baltenweck I, Njoroge L, Patil BR, Ibrahim MN et al<\/em>., 2006. Smallholder Dairy Farmer Access to Alternative Milk Market Channels in Gujarat. In IAAE Conference, Brisbane, Australia<\/p>\r\n\r\n

Tripathy A, Bardhan D, Kumar S, Kumar S, Singh SRK et al<\/em>., 2022. Value chain analysis of Kadaknath chicken in Madhya Pradesh and Chhattisgarh. Agric Econ Res Rev, 35(2): 135-150, doi: 10.5958\/0974-0279.2022.00036.2<\/a><\/p>\r\n\r\n

Vandeplas A, 2011. Multinationals or Cooperatives: Does It Matter to Farmers? - A Study of the Dairy Sector in Punjab (India). 2011 International Congress, August 30 - September 2, 2011, Zurich, Switzerland<\/a> 115545, EAAE<\/p>\r\n\r\n

Vandeplas A, Minten B and Swinnen J, 2013. Multinationals vs. cooperatives: The income and efficiency effects of supply chain governance in India. J Agric Econ, 64(1): 217-244, doi:  10.1111\/1477-9552.12004<\/a><\/p>\r\n\r\n

Vidhyashree H, Santhosha K, Patil GI, Yadava CG, Gagana M et al<\/em>., 2024. Marketing efficiency in cut roses: A comparative study of organised vis-a-vis unorganised markets. Arch Curr Res Int, 24(5): 383-390, doi: 10.9734\/acri\/2024\/v24i5713<\/a><\/p>\r\n","corresponding_author_email":"bikram.agriext@outlook.com","received_date":"2024-09-07","accepted_date":"2024-11-10","published_date":"2024-12-06","citation":"Barman B, Mohammad A, Munshi SA, Kisku U and Girish CE, 2024. Assessing the producer\u2019s share in the consumer rupee: An analytical study of Rajbanshi dairy farmers. Indian J Anim Health, DOI: https:\/\/doi.org\/10.36062\/ijah.2024.11424","pageNumber":"","number_view":"32","snippet":"114-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2024.11424-347","author":"","is_show":"Y","feature_view":"Y"},{"id":"348","issue_id":"0","doi_number":"10.36062\/ijah.2025.01424","title":"Importance of major genes to compensate for the harmful summer climatic effects in fowl","description":"

Abstract<\/strong><\/p>\r\n\r\n

When environmental temperature is more than 27°C, the fowl upsurges panting and decreases metabolic rate to ease body’s heat increment. There are many measures that can be applied to improve the opposing effects of tropical climatic stress. There are many options like nutritional adjustment, day-to-day poultry management, or feed additives, and probiotics are regularly used to alleviate the lethal effects of climatic stress in poultry. There are several major genes, viz. naked neck (Na), frizzle (F), slow feathering (K), and dwarf (dw), that could be implemented as a considerable elucidation to progress productive and reproductive outcomes for fowls grown in tropical climatic conditions. The birds carrying naked necks (Na) and frizzle (F) genes increase fame due to their decorative appearance and enhanced productive and reproductive activity in hot weather. The dwarf (dw) breeders dam line has better survivability, adaptability, disease resistance and hatchability in summer climates compared to normal fowls. The sex-linked slow feathering introgression in fowl is used for wing sexing in some layer breeds. The practical application of major genes as a breeding strategy has been discussed for countries that have tropical climates or challenging hot summers.<\/strong><\/p>\r\n","keywords":"Dwarf gene, Frizzle gene, Major genes, Naked neck gene, Slow feathering gene","article_type":"1","status":"Y","price_status":"F","reference":"

Chen ZY, Gan JK, Xiao X, Jiang LY and Zhang XQ, 2013. The association of SNPs in Hsp90β<\/em> gene 5′ flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds. Mol Biol Rep, 40: 5295-5306, doi: 10.1007\/s11033-013-2630-3<\/a><\/p>\r\n\r\n

Desta TT, 2021. The genetic basis and robustness of naked neck mutation in chicken. Trop Anim Health Prod, 53: 95, doi: 10.1007\/s11250-020-02505-1<\/a><\/p>\r\n\r\n

Dong J, He C, Wang Z, Li Y and Li S, 2018. A novel deletion in KRT75L4<\/em> mediates the frizzle trait in a Chinese indigenous chicken. Genet Sel Evol, 50: 68, doi: 10.1186\/s12711-018-0441-7<\/a><\/p>\r\n\r\n

Fathi MM, Galal A, El-Safty S and Mahrous M, 2013. Naked neck and frizzle genes for improving chickens raised under high ambient temperature: I. Growth performance and egg production. Worlds Poult Sci J, 69(4): 813-832, doi: 10.1017\/S0043933913000834<\/a><\/p>\r\n\r\n

Fathi MM, Galal A, El-Safty S and Mahrous M, 2014. Naked neck and frizzle genes for improving chickens raised under high ambient temperature: II. Blood parameters and immunity. Worlds Poult Sci J, 70: 165-172, doi: 10.1017\/S0043933914000142<\/a><\/p>\r\n\r\n

Fathi MM, Galal A, Radwan LM, Abou-Emera OK and Al-Homidan IH 2022. Using major genes to mitigate the deleterious effects of heat stress in poultry: An updated review. Poult Sci, 101(11): 102157, doi: 10.1016\/j.psj.2022.102157<\/a><\/p>\r\n\r\n

Fernandes E, Raymundo A, Martins LL, Lordelo M and de Almeida AM, 2023. The naked neck gene in the domestic chicken: A genetic strategy to mitigate the impact of heat stress in poultry production- A review. Animals, 13(6): 1007, doi: 10.3390\/ani13061007<\/a><\/p>\r\n\r\n

Galal A, Radwan LM, Rezik HH, and Ayoub H, 2019. Expression levels of HSP70<\/em> and CPT-1<\/em> in three local breeds of chickens reared under normal or heat stress conditions after the introduction of the naked neck gene. J Therm Biol, 80: 113-118, doi: 10.1016\/j.jtherbio.2018.12.018<\/a><\/p>\r\n\r\n

Goger H, Demirtas SE and Yurtogulla S, 2017. Determination effects of slow (K<\/em>) and fast (k+<\/em>) feathering gene on egg production and hatching traits in laying hens. Asian J Anim Vet Adv, 12(5): 247-253, doi: 10.3923\/ajava.2017.247.253<\/a><\/p>\r\n\r\n

Khosravinia H and Manafi M, 2016. Broiler chicks with slow-feathering (K<\/em>) or rapid-feathering (k+<\/em>) genes: effects of environmental stressors on physiological adaptive indicators up to 56 h post hatch. Poult Sci, 95(8): 1719-1725, doi: 10.3382\/ps\/pew107<\/a><\/p>\r\n\r\n

Kumar M, Ratwan P, Dahiya SP and Nehra AK, 2021. Climate change and heat stress: impact on production, reproduction and growth performance of poultry and its mitigation using genetic strategies. J Therm Biol, 97: 102867, doi:  10.1016\/j.jtherbio.2021.102867<\/a><\/p>\r\n\r\n

Lara LJ and Rostagno MH, 2013. Impact of heat stress on poultry production. Animals, 3(2): 356-369, doi: 10.3390\/ani3020356<\/a><\/p>\r\n\r\n

Pawar SS, Sajjanar B, Lonkar VD, Kurade NP and Kadam AS, 2016. Assessing and mitigating the impact of heat stress in poultry. Adv Anim Vet Sci, 4(6): 332-341, doi: 10.14737\/journal. aavs\/2016\/4.6.332.341<\/a><\/p>\r\n\r\n

Wasti S, Sah N and Mishra B, 2020. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals, 10(8): 1266, doi: 10.3390\/ani10081266<\/a><\/p>\r\n","corresponding_author_email":"patrabn1@gmail.com","received_date":"2024-02-06","accepted_date":"2024-11-23","published_date":"2025-03-18","citation":"Patra B, Choudhary S, Purohit H, Gaur P, Manzoor A, Yadav DK and Walia R, 2025. Importance of major genes to compensate for the harmful summer climatic effects in fowl. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.01424","pageNumber":"","number_view":"10","snippet":"014-24-Rev.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.01424-348","author":"","is_show":"Y","feature_view":"Y"},{"id":"349","issue_id":"0","doi_number":"10.36062\/ijah.2025.07224","title":"Assessing the relative effectiveness of synthetic and herbal choline supplements on growth performance, carcass quality and gene expression studies in broilers","description":"

Abstract<\/strong><\/p>\r\n\r\n

Broilers on high-energy diets face metabolic challenges, including fatty liver syndrome and related complications. Choline, crucial for acetylcholine synthesis and liver fat metabolism, influences nutrient assimilation and energy metabolism, with deficiency causing growth issues and health complications. This study evaluated the potential of herbal choline supplements derived from specific plants as an alternative to synthetic choline. A total of 200 day-old Vencobb broiler chicks were randomly allocated into four groups, each comprising 50 birds. Each group was further divided into five replicates, with 10 chicks per replicate. The experimental diets were organized as follows: a control group (T0) fed a basal diet; T1, supplemented with synthetic choline chloride (600 g\/tonne) and biotin (150 g\/tonne); T2, supplemented with Repchol (500 g\/tonne); and T3, supplemented with a local herbal choline product, Brand A (1000 g\/tonne). Results indicated herbal choline supplements surpassed synthetic choline chloride effects. Improved growth and performance, particularly in T2, were observed. Gene expression indicated herbal choline's distinct molecular pathway compared to synthetic choline chloride, as it did not significantly (P>0.05) influence PEPCK<\/em> and FAS<\/em> genes. Carcass quality parameters revealed positive impacts in T2, including live weight, dressed weight, breast meat yield, and abdominal fat reduction. Carcass traits, as a percentage of live weight, significantly (P<0.05) improved in herbal supplement groups. The study highlights herbal choline’s potential as a viable synthetic choline substitute in broiler diets. Their enhanced impact on growth, overall performance, and carcass quality supports the exploration of natural substitutes, encourages sustainable practices, and addresses the challenges associated with using synthetic additives in poultry diets.<\/strong><\/p>\r\n","keywords":"Herbal Choline, Choline supplements, Gene expression, Performance","article_type":"2","status":"Y","price_status":"F","reference":"

AOAC, 1996. Official methods of analysis of AOAC International 1996. AOAC, Washington, DC., USA<\/p>\r\n\r\n

BIS, 2007. Indian standards of poultry feed specification, 5th revision. IS: 1374, Bureau of Indian Standards, Manak Bhavan, New Delhi, India<\/p>\r\n\r\n

Calderano AA, Nunes RV, Rodrigueiro RJB and César RA, 2015. Replacement of choline chloride by a vegetal source of choline in diets for broilers. Ciência Anim Bras, 16(1): 37-44, doi: 10.1590\/1089-6891v16i127404<\/a><\/p>\r\n\r\n

D’souza P and Selvam R, 2022. Evaluation of polyherbal formulation in broilers fed high energy diet: implications on zootechnical parameters, fat accretion, and serum L-carnitine levels. J Adv Vet Anim Res, 9(1): 166-174, doi:  10.5455\/javar.2022.i581<\/a><\/p>\r\n\r\n

Dias AGF, Leandro NSM, Stringhini JH, Batista JMM, Brasileiro JCL et al.<\/em>, 2022. Replacement of choline chloride with a plant source of choline in broiler chicken diets. Anim Prod Sci, 63(5): 463-470, doi: https:\/\/doi.org\/10.1071\/AN22205<\/a><\/p>\r\n\r\n

Emmert JL and Baker DH, 1997. A chick bioassay approach for determining the bioavailable choline concentration in normal and overheated soybean meal, canola meal, and peanut meal. J Nutr, 127(5): 745-752, doi: 10.1093\/jn\/127.5.745<\/a><\/p>\r\n\r\n

Farina G, Kessler ADM, Ebling PD, Marx FR, César R et al.<\/em>, 2017. Performance of broilers fed different dietary choline sources and levels. Ciência Anim Bras, 18: 1-14, doi: 10.1590\/1089-6891v18e-37633<\/a><\/p>\r\n\r\n

Filho Demattê LC, Pereira DCO and Possamai E, 2015. Dietary supplementation of alternative methionine and choline sources in the organic broiler production in Brazil. Braz J Poult Sci, 17(4): 489-496, doi: 10.1590\/1516-635X1704489-496<\/a><\/p>\r\n\r\n

Hoyles L, Jiménez-Pranteda M, Chilloux J, Brial F, Myridakis A et al.<\/em>, 2018. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome 6(1): 73, doi: 10.1186\/s40168-018-0461-0<\/a><\/p>\r\n\r\n

Huang JY, Yang JH and Wang Y, 2007. Effects of different dietary choline levels on liver lipid deposition and gene expressions of very low-density lipoprotein receptor and apolipoprotein E in laying hens. Poult Sci, 86(11): 2396-2400<\/p>\r\n\r\n

Igwe IR, Okonkwo CJ, Uzoukwu UG and Onyenegecha CO, 2015. The effect of choline chloride on the performance of broiler chickens. Annu Res Rev Biol, 8(3): 1-8, doi: 10.9734\/ARRB\/2015\/19372<\/a><\/p>\r\n\r\n

Kathirvelan C, Chandrasekaran D, Vasanthakumar P and Purushothaman MR, 2013. Effect of replacement of synthetic choline with herbal choline on growth performance of broilers. Indian J Anim Nutr, 30(2): 184-187<\/p>\r\n\r\n

Khose K, Manwar S, Gole M, Ingole R and Rathod P, 2019 Replacement of synthetic choline chloride by herbal choline in diets on liver function enzymes, carcass traits and economics of broilers. J Anim Res, 9(1): 87-93, doi: 10.30954\/2277-940X.01.2019.12<\/a><\/p>\r\n\r\n

Khosravinia H, Chethen PS, Umakantha B and Nourmohammadi R, 2015. Effects of lipotropic products on productive performance, liver lipid and enzymes activity in broiler chickens. Poult Sci J, 3(2): 113-120<\/p>\r\n\r\n

Kidd PM, 2007. Omega-3 DHA and EPA for cognition, behaviour, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev, 12(3): 207-227<\/p>\r\n\r\n

Koujalagi S, Chhabra S, Randhawa SNS, Singh R, Randhawa CS et al.<\/em>, 2018. Effect of herbal biocholine supplementation on oxidative stress and biochemical parameters in transition dairy cows. Pharma Innov J, 7(4): 842-847<\/p>\r\n\r\n

Kumar CA, Sushmita T, Swaroop MN, Pranshu S, Kotagiri R et al.<\/em>, 2018. Effect of partial replacement of dietary DL-methionine with herbal methionine replacers on the growth and performance of broilers. J Anim Res, 8(2): 297-301, doi: 10.14202\/vetworld.2017.101-105<\/a><\/p>\r\n\r\n

Lopez G and Leeson S, 1995. Response of broiler breeders to low-protein diets: 1. Adult breeder performance. Poult Sci, 74(4): 685-695, doi: 10.3382\/ps.0740685<\/a><\/p>\r\n\r\n

Maka?a H, 2021. Impact of selected feed additives in broiler nutrition on breeding and the meat quality features. Intech Open, doi: 10.5772\/intechopen.99099<\/a><\/p>\r\n\r\n

Martínez Y, Orozco CE, Montellano RM, Valdivié M and Parrado CA, 2021. Use of achiote (Bixa orellana<\/em> L.) seed powder as pigment of the egg yolk of laying hens. J Appl Poult Res, 30(2): 100154, doi: 10.1016\/j.japr.2021.100154<\/a><\/p>\r\n\r\n

Muthukumarasamy B, Sahu BK, Swain RK and Samantaray DP, 2004 Studies on the effect of biocholine supplementation in commercial broilers. Indian J Poult Sci, 39(3): 246-251<\/p>\r\n\r\n

Pompeu MA, Lara LJC, Baião NC, Ecco R, Cançado SV et al.<\/em>, 2011. Suplementação de colinaemdietas para frangos de corte machos nafaseinicial de criação. Arq Bras Med Vet Zootec, 65(6): 1446-1452, doi: 10.1590\/S0102-09352013000600035<\/a> <\/p>\r\n\r\n

Rodelas APM, Magpantay VA and Luis ES, 2011. Efficacy of bio choline alone or in combination with herbal vitamins C and E on the growth performance of broilers. Philipp J Vet Anim Sci, 37(1): 19-26<\/p>\r\n\r\n

Selvam R, Saravanakumar M, Suresh S, Chandrasekeran CV and Prashanth DS, 2018. Evaluation of polyherbal formulation and synthetic choline chloride on choline deficiency model in broilers: implications on zootechnical parameters, serum biochemistry, and liver histopathology. Asian-Australas J Anim Sci, 31(11): 1795, doi: 10.5713\/ajas.18.0018<\/a><\/p>\r\n\r\n

Snedecor GW and Cochran WG, 1994. Statistical Methods. Ames, IA: Iowa State University Press Xu CF, Yu CH, Xu L, Sa XY and Li YM, 2010. Hypouricemic therapy: A novel potential therapeutic option for non-alcoholic fatty liver disease, doi: 10.1002\/hep.23798<\/a><\/p>\r\n","corresponding_author_email":"anilmanas@gmail.com","received_date":"2024-05-19","accepted_date":"2024-11-23","published_date":"2025-03-18","citation":"Anil Kumar C, Susmita T, Naveen Swaroop M, Muralidhar M and Ganguly B, 2025. Assessing the relative effectiveness of synthetic and herbal choline supplements on growth performance, carcass quality and gene expression studies in broilers. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.07224","pageNumber":"","number_view":"4","snippet":"072-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.07224-349","author":"","is_show":"Y","feature_view":"Y"},{"id":"350","issue_id":"0","doi_number":"10.36062\/ijah.2025.07624","title":"Outbreak of Lumpy skin disease (LSD) in Mizoram, India","description":"

Abstract<\/strong><\/p>\r\n\r\n

Lumpy skin disease (LSD) is a newly emerged disease of bovines in India. In India, the first outbreak of LSD was reported from Odisha in 2019. Since then, it has spread over various states of the country. A total of 54 samples from 18 affected animals from Aizawl (n=16) and Champhai (n=2) districts were collected. All the samples were processed for detection of LSD virus by PCR and further analyzed by DNA sequencing. The DNA sequences were analyzed to generate the phylogenetic relationship with other circulating LSDV in this region as well as countries. All the skin scabs from affected animals were recorded as positive for LSDV, and the circulating viruses were found to be related to other LSDV viruses of Assam, Odisha, West Bengal, Andhra Pradesh, as well as Chinese strains. To the best of our knowledge, this is the first report of LSD outbreak in Mizoram.<\/strong><\/p>\r\n","keywords":"India, Lumpy skin disease, Mizoram","article_type":"3","status":"Y","price_status":"F","reference":"

Ali H, Ali AA, Atta MS and Cepica A, 2012. Common, emerging, vector-borne and infrequent abortogenic virus infections of cattle. Transbound Emerg Dis, 59(1): 11-25, doi: 10.1111\/j.1865-1682.2011.01240.x<\/a><\/p>\r\n\r\n

Al-Salihi K, 2014. Lumpy skin disease: Review of the literature. Mirror Res Vet Sci Ani, 3(3): 6-23<\/p>\r\n\r\n

Kavitha Kl, Sreedevi B and Rajesh K, 2021. Clinico-molecular diagnosis and molecular characterization of bovine lumpy skin disease virus in Andhra Pradesh, India. Trop Anim Health Prod, 53(4): 424, doi: 10.1007\/s11250-021-02872-3<\/a><\/p>\r\n\r\n

Kumar N, Chander Y, Kumar R, Khandelwal N, Riyesh T et al<\/em>., 2021. Isolation and characterization of lumpy skin disease virus from cattle in India. PLoS One, 16(1): e0241022, doi: 10.1371\/journal.pone.0241022<\/a><\/p>\r\n\r\n

Lamien CE, Lelenta M, Goger W, Silber R, Tuppurainen E et al<\/em>., 2011. Real time PCR method for simultaneous detection, quantitation and differentiation of capripox viruses. J Virol Methods, 171: 134-140, doi: 10.1016\/j.jviromet.2010.10.014<\/a><\/p>\r\n\r\n

Rajkhowa TK, <\/a>Mohanarao GJ<\/a>, Gogoi A<\/a>, Hauhnar L <\/a>and  Isaac L,<\/a> 2015. Porcine reproductive and respiratory syndrome virus (PRRSV) from the first outbreak of India shows close relationship with the highly pathogenic variant of China. Vet Q, 35(4): 186-193, doi: 10.1080\/01652176.2015.1066043<\/a><\/p>\r\n\r\n

Rajkhowa TK, <\/a>Kiran J, Hauhnar L, Zodinpui D, Paul A et al<\/em>.,<\/a> 2022. Molecular detection and characterization of African swine fever virus from field outbreaks in domestic pigs, Mizoram, India. Transbound Emerg Dis,   doi: 10.1111\/tbed.14384<\/a>    <\/p>\r\n\r\n

Salib FA and Osman AH, 2011. Incidence of Lumpy skin disease among Egyptian cattle in Giza Governorate, Egypt. Vet World, 4(4): 162-167<\/p>\r\n\r\n

Sprygin A, Pestova Y, Bjadovskaya O, Prutnikov P, Zinyakov N et al<\/em>., 2020. Evidence of recombination of vaccine strains of lumpy skin disease virus with field strains, causing disease. PLoS One, 15(5): e0232584, doi: 10.1371\/journal.pone.0232584<\/a> <\/p>\r\n\r\n

Sudhakar SB, Mishra N, Kalaiyarasu S, Jhade SK, Hemadri D et al<\/em>., 2019. Lumpy skin disease (LSD) outbreaks in cattle in Odisha state, India in August 2019: epidemiological features and molecular studies. Transbound Emerg Dis, 67(6): 2408-2422, doi: 10.1111\/tbed.13579<\/a><\/p>\r\n\r\n

Tulman ER, Afonso CL, Lu Z, Zsak L, Sur JH et al<\/em>., 2002. The genomes of sheeppox and goatpox viruses. J Virol, 76(12): 6054-6061, doi: 10.1128\/jvi.76.12.6054-6061.2002<\/a><\/p>\r\n\r\n

Tuppurainen ESM, Lubinga JC, Stoltsz WH, Troskie M, Carpenter ST et al<\/em>., 2013. Mechanical transmission of lumpy skin disease virus by Rhipicephalus appendiculatus<\/em> male ticks. Epidemiol Infect, 141(2): 425-430, doi: 10.1017\/S0950268812000805<\/a><\/p>\r\n\r\n

Zeynalova S, Asadov K, Guliyev F, Vatani M and Aliyev V, 2016. Epizootology and molecular diagnosis of lumpy skin disease among livestock in Azerbaijan. Front Microbiol, 7: 1022, doi: 10.3389\/fmicb.2016.01022<\/a><\/p>\r\n","corresponding_author_email":"tapandutta@rediffmail.com","received_date":"2024-05-22","accepted_date":"2024-11-25","published_date":"2025-03-18","citation":"Dutta TK, Roychoudhury P, Lalsangzuala C and Zohmingthangi, 2025. Outbreak of Lumpy skin disease (LSD) in Mizoram, India. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.07624","pageNumber":"","number_view":"3","snippet":"076-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.07624-350","author":"","is_show":"Y","feature_view":"Y"},{"id":"351","issue_id":"0","doi_number":"10.36062\/ijah.2025.04824","title":"Construction and standardization of knowledge test for assessing scientific sheep farming practices","description":"

Abstract<\/strong><\/p>\r\n\r\n

This study focuses on the construction and standardization of a knowledge test regarding scientific sheep farming practices in northern plains and hills zone of India. The test aims to evaluate farmers' knowledge across key areas viz. feeding, breeding, housing, health care, and other managemental practices. Initially, 80 items were collected, among which 66 were selected according to standard criteria. After relevancy testing, 50 items were found to be most relevant by the experts. In item analysis, 40 items lie between the difficulty index range of 20 to 80 and the discrimination index range of 0.20 to 0.70. The reliability test was done using the Spearman-Brown formula (0.87) and Cronbach's alpha formula (0.83), and also the content validity (S-CVI) worked out as 0.91. Hence, a standardized knowledge test was developed consisting of 40 items, which can be used by researchers and academicians to assess the knowledge of farmers towards scientific sheep husbandry. This test is suitable for assessing the knowledge level of the stakeholders about sheep farming practices, and awareness and training programs can be planned accordingly.<\/strong><\/p>\r\n","keywords":"Cronbach\u2019s alpha, Difficulty index, Discrimination index, Relevancy testing, Split-half reliability","article_type":"2","status":"Y","price_status":"F","reference":"

Almhdy H, and Metawi HR, 2000. Efficiency of sheep production system under arid conditions of Sinai: effects of ewe body weights, lamb marketing age and annual range availability. In Proc. 3rd All Africa Conference on Animal Agriculture and 11th Conference Egyptian Society of Animal Production, pp 643-647<\/p>\r\n\r\n

BAHS, 2022. Basic Animal Husbandry Statistics, Department of Animal Husbandry, Ministry of Agriculture, Government of India<\/p>\r\n\r\n

Brown W, 1910. Some experimental results in the correlation of mental abilities. Br J Psychol, 3(3): 296-322, doi: 10.1111\/j.2044-8295.1910.tb00207.x<\/a> <\/p>\r\n\r\n

Cronbach LJ, 1946. A case study of the split half reliability coefficient. J Educ Psychol, 37(8): 473-480, doi: 10.1037\/h0054328<\/a><\/p>\r\n\r\n

Edwards AL, 1957. Techniques of Attitude Scale Construction. Vakils, Feffer and Simons Inc, New York<\/p>\r\n\r\n

Ghafouri-Kesbi F, Abbasi MA, Afraz F, Babaei M, Baneh H et al<\/em>., 2011. Genetic analysis of growth rate and Kleiber ratio in Zandi sheep. Trop Anim Health Prod, 43: 1153-1159, doi: 10.1007\/s11250-011-9816-2<\/a><\/p>\r\n\r\n

Johnson DC, Chander M, Sagar MP, Verma MR and Patil AP, 2023. Assessing organic poultry farming knowledge among tribal farmers: A Tailored Knowledge Test. Indian J Ext Educ, 59(4): 141-144. doi: 10.48165\/IJEE.2023.59428<\/a><\/p>\r\n\r\n

Johnson WL, 1984. Strategies for improving the nutritional status of small ruminants in tropical ecosystems. Prev Vet Med, 2: 589-601, doi: 10.1016\/0167-5877(84)90105-3<\/a> <\/p>\r\n\r\n

Kerlinger FN, 1987. Foundations of Behavioural Research. 3rd edition. Holt, Rinehart and Winston, New York<\/p>\r\n\r\n

Kumar P, Prahlad Singh S, Peshin R and Singh A, 2021. Development And Standardization of Knowledge Test on Organic Dairy Farming (odf) Practices in Sub Tropics of Jammu Region of Jammu and Kashmir State (India). Paper at: Organic World Congress 2021, Science Forum: 6th ISOFAR Conference co-organised with INRA, FiBL, Agroecology Europe, TP Organics and ITAB, Rennes, France, 8 - 10 September, 2021<\/p>\r\n\r\n

Peters N, 1988. Laminar flamelet concepts in turbulent combustion.  Symp (Int) Combust, 21(1): 1231-1250, doi: 10.1016\/S0082-0784(88)80355-2<\/a><\/p>\r\n\r\n

Shruti, Singh M, Singh BP, Shyamkumar TS, Aneesha VA et al<\/em>., 2022. Construction and validation of knowledge test regarding plant toxicity in dairy animals: A methodological approach. J Community Mobilization Sustain Dev, 17(2):  507-514<\/p>\r\n\r\n

Slingerland M, 2000. Mixed farming: scope and constraints in West African savanna. PhD thesis: Wageningen University and Research<\/p>\r\n\r\n

Spearman C, 1910. Correlation calculated from faulty data. Br J Psychol, 3: 271-295, doi: 10.1111\/j.2044-8295.1910.tb00206.x<\/a><\/p>\r\n\r\n

Subrahmanyeswari B and Chander M, 2008. A scale to measure attitude of registered organic farmers towards organic livestock farming. Livest Res Rural Dev, 20(2): 20026<\/p>\r\n\r\n

Vijayan B, Nain MS, Singh R, Kumbhare NV and Kademani SB, 2023. Knowledge test for extension personnel on Rashtriya Krishi Vikas Yojana. Indian J Ext Educ, 59(1): 131-134, doi: 10.48165\/IJEE.2023.59127<\/a><\/p>\r\n","corresponding_author_email":"harideep0507@gmail.com","received_date":"2024-04-02","accepted_date":"2024-12-06","published_date":"2025-03-18","citation":"Verma H, Singh M, Shruti, Chander M, Meena HR, Saran V and Prabex S, 2025. Construction and standardization of knowledge test for assessing scientific sheep farming practices. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.04824","pageNumber":"","number_view":"3","snippet":"048-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.04824-351","author":"","is_show":"Y","feature_view":"Y"},{"id":"352","issue_id":"0","doi_number":"10.36062\/ijah.2025.06424","title":"Total phenol and antimicrobial properties of green coconut husk extract","description":"

Abstract<\/strong><\/p>\r\n\r\n

 Ethanol (70%) hot water (45±2°C) and a combination of 70% ethanol and hot water (60:40 mL) were used as solvents to produce an extract from green coconut husk. The antioxidant properties of the extract were evaluated by estimating the total phenolic content (TPC) using the Folin-Ciocalteu reagent, while its antimicrobial effect on selected bacteria was investigated using the agar well diffusion method. The highest TPC was observed in the ethanolic coconut husk extract (ECHE) with 313.44±0.26 mg GAE\/g, followed by a mixture of ethanol and hot water coconut husk extract (MEHWCHE) with 300.35±0.25 mg GAE\/g, while the lowest concentration was found in the hot water coconut husk extract (HWCHE) around 269.76±0.25 mg GAE\/g. The antimicrobial activity of these extracts against Escherichia coli, Staphylococcus aureus<\/em> and Bacillus cereus<\/em> showed that ECHE had higher inhibition zones for all species compared to MEHWCHE and HWCHE. Coconut husk, a widely available byproduct of Cocos nucifera<\/em>, contains significant levels of phenolic compounds with potent antioxidant and antimicrobial properties. Optimized unconventional extraction methods can efficiently isolate these bioactive compounds, providing a sustainable and eco-friendly solution for valorizing coconut husk waste while addressing pollution issues. The aim of the current study is to evaluate the potential to extract beneficial plant-based compounds from coconut husks using ethanol and hot water, which could be utilized as dietary polyphenols or natural food preservatives.<\/strong><\/p>\r\n","keywords":"Agar well diffusion, Antimicrobial activity, Coconut husk extract, Folin-Ciocalteu reagent, Total phenolic content","article_type":"3","status":"Y","price_status":"F","reference":"

Adkins SW, Foale M and Samosir YMS, eds, 2006. Coconut revival: new possibilities for the ‘tree of life’. Proceedings of the International Coconut Forum held in Cairns, Australia, 22-24 November 2005. ACIAR Proceedings No. 125, pp 161-167<\/p>\r\n\r\n

Alviano WS, Alviano DS, Diniz CG, Antoniolli AR, Alviano CS et al<\/em>., 2008. In vitro<\/em> antioxidant potential of medicinal plant extracts and their activities against oral bacteria based on Brazilian folk medicine. Arch Oral Biol, 53(6): 545-552, doi: 10.1016\/j.archoralbio.2007.12.001<\/a><\/p>\r\n\r\n

Buamard N and Benjakul S, 2015. Improvement of gel properties of sardine (Sardinella albella<\/em>) surimi using coconut husk extracts. Food Hydrocol, 51: 146-155, doi: 10.1016\/j.foodhyd.2015.05.011<\/a><\/p>\r\n\r\n

Chakraborty M and Mitra A, 2008. The antioxidant and antimicrobial properties of the methanolic extract from Cocos nucifera<\/em> mesocarp. Food Chem, 107(3): 994-999, doi: 10.1016\/j.foodchem.2007.08.083<\/a><\/p>\r\n\r\n

Cyriac MB, Pai V, Shantaram M and Jose M, 2013. Antimicrobial properties of coconut husk aqueous extract on cariogenic bacteria. Arch Med Health Sci, 1(2): 126-130, doi: 10.4103\/2321-4848.123024<\/a><\/p>\r\n\r\n

Dai J and Mumper RJ, 2010. Plant phenolics: extraction, analysis, and their antioxidant and anticancer properties. Molecules, 15(10): 7313-7352, doi: 10.3390\/molecules15107313<\/a><\/p>\r\n\r\n

Dey G, Sachan, Ghosh S and Mitra A, 2003. Detection of major phenolic acids from dried mesocarpic husk of mature coconut by thin layer chromatography. <\/em>Ind Crops Prod, 18(2): 171-176, doi: 10.1016\/S0926-6690(03)00056-6<\/a><\/p>\r\n\r\n

Esquenazi D, Wigg MD, Miranda MM, Rodrigues HM, Tostes JB et al<\/em>., 2002. Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera<\/em> Linn. (Palmae) husk fiber extract. Res Microbiol, 153(10): 647-652, doi:  10.1016\/s0923-2508(02)01377-3<\/a><\/p>\r\n\r\n

FAOSTAT, 2020. Available in: https:\/\/www.statista.com\/statistics\/1040499\/world-coconut-production-by-leading-producers\/ (Accessed on 01\/03\/2024)<\/p>\r\n\r\n

Genwali GR, Acharya PP and Rajbhandari M, 2013. Isolation of gallic acid and estimation of total phenolic content in some medicinal plants and their antioxidant activity. Nepal J Sci Technol, 14(1): 95-102, doi: 10.3126\/njst.v14i1.8928<\/a><\/p>\r\n\r\n

Jose M, Cyriac MB, Pai V, Varghese I and Shantaram M, 2014. Antimicrobial properties of Cocos nucifera<\/em> (coconut) husk: An extrapolation to oral health. J Nat Sci Biol Med, 5(2): 359-364, doi: 10.4103\/0976-9668.136184<\/a><\/p>\r\n\r\n

Lin JY and Tang CY, 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food chem, 101(1): 140-147, doi: 10.1016\/j. foodchem.2006.01.014<\/a><\/p>\r\n\r\n

Maqsood S, Benjakul S and Shahidi F, 2013. Emerging role of phenolic compounds as natural food additives in fish and fish products. Crit Rev Food Sci Nutr, 53(2): 162-179, doi: 10.1080\/10408398.2010.518775<\/a><\/p>\r\n\r\n

Mazaya G, Karseno K and Yanto T, 2020. Antimicrobial and phytochemical activity of coconut shell extracts. Turk J Agri Food Sci Technol, 8(5): 1090-1097, doi: 10.24925\/turjaf.v8i5.1090-1097.3282<\/a><\/p>\r\n\r\n

Olatunde OO, Benjakul S and Vongkamjan K, 2019. Coconut husk extract: antibacterial properties and its application for shelf-life extension of Asian sea bass slices. Int J Food Sci Technol,<\/em> 54(3): 810-822, doi: 10.1111\/ijfs.14000<\/a><\/p>\r\n\r\n

Parekh J, Jadeja D and Chanda S, 2006. Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turk J Biol, 29(4): 203-210<\/p>\r\n\r\n

Quinones-Bolanos E, Gomez-Oviedo M, Mouthon-Bello J, Sierra-Vitola L and Berardi U, 2020. Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing. J Environ Manage, 277: 111503, doi: 10.1016\/j.jenvman.2020.111503<\/a> <\/p>\r\n\r\n

Rodiah MH, Nur Asma Fhadhila Z, Kawasaki N, Noor Asiah H and Aziah MY, 2018. Antioxidant activity of natural pigment from husk of coconut. Pertanika J Trop Agric Sci, 41(1): 441-451<\/p>\r\n\r\n

Santos-Buelga C, Gonzalez-Manzano S, Dueñas M and Gonzalez-Paramas AM, 2012. Extraction and Isolation of Phenolic Compounds. In: Sarker S, Nahar L, (edn) Natural Products Isolation. Methods in Molecular Biology, Vol. 864. Humana Press, pp 427-464, doi: 10.1007\/978-1-61779-624-1_17<\/a><\/p>\r\n\r\n

Schena T, Lazzari E, Primaz C, Krause LC, Machado ME et al<\/em>., 2020. Upgrading of coconut fibers bio-oil: An investigation by Gc×Gc\/ tofms. J Environ Chem Eng, 8(2): 103662, doi: 10.1016\/j.jece.2020.103662<\/a><\/p>\r\n\r\n

Shi J, Nawaz H, Pohorly J, Mittal G, Kakuda Y et al<\/em>., 2005. Extraction of polyphenolics from plant material for functional foods engineering and technology. Food Rev Int, 21(1): 139-166, doi: 10.1081\/FRI-200040606<\/a><\/p>\r\n\r\n

Sultana B, Anwar F and Ashraf M, 2009. Effect of extraction solvent\/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6):  2167-2180, doi: 10.3390\/molecules14062167<\/a><\/p>\r\n\r\n

Uy IA, Dapar MLG, Aranas AT, Mindo RAR, Manting MME et al<\/em>., 2019. Qualitative assessment of the antimicrobial, antioxidant, phytochemical properties of the ethanolic extracts of the roots of Cocos nucifera L<\/em>. Pharmacophore, 10(2): 63-75<\/p>\r\n\r\n

Valadez-Carmona L, Cortez-García RM, Plazola-Jacinto CP, Necoechea-Mondragón H and Ortiz-Moreno A, 2016. Effect of microwave drying and oven drying on the water activity, color, phenolic compounds content and antioxidant activity of coconut husk (Cocos nucifera<\/em> L.). J Food Sci Technol, 53(9): 3495- 3501, doi: 10.1007\/s13197-016-2324-7<\/a><\/p>\r\n\r\n

Van Dam JE, Van den Oever MJ, Teunissen W, Keijsers ER and Peralta, 2004. Process for production of high density high performance binderless boards from whole coconut husk: Part 1: Lignin as intrinsic thermosetting binder resin. Ind Crop Prod, 19(3): 207-216, doi: 10.1016\/j.indcrop.2003.10.003<\/a><\/p>\r\n\r\n

Verma V, Bhardwaj A, Rathi S and Raja RB, 2012. A potential antimicrobial agent from Cocos nucifera<\/em> mesocarp extract; development of a new generation antibiotic. Int Res J Boil Sci, 1(2): 48-54<\/p>\r\n","corresponding_author_email":"poojasaklani100@gmail.com","received_date":"2024-05-01","accepted_date":"2024-12-10","published_date":"2025-03-18","citation":"Saklani P, Dora KC, Roy S, Siddhnath K and Mandal R, 2025. Total phenol and antimicrobial properties of green coconut husk extract. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.06424","pageNumber":"","number_view":"3","snippet":"064-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.06424-352","author":"","is_show":"Y","feature_view":"Y"},{"id":"353","issue_id":"0","doi_number":"10.36062\/ijah.2025.02024","title":"Exploring the potential of metabolomics in the dairy industry: A mini review","description":"

Abstract<\/strong><\/p>\r\n\r\n

The dairy industry is crucial for meeting global food and nutrition demands, providing high-quality proteins, calcium, vitamins, and minerals. However, the image of milk as white ambrosia has been tarnished due to adulteration, which poses risks to consumer health and compromises the integrity of dairy products. Traceability in the milk and dairy product industry ensures the safety, quality, and transparency of the entire supply chain. This allows for meticulous tracking of each stage of production and distribution, enabling quick identification of potential issues and addressing them. Metabolomics is a rapidly advancing field of study that focuses on the comprehensive analysis of small molecules or metabolites within a biological system. It involves identifying, quantifying, and analyzing these metabolites to understand the metabolic processes occurring in cells, tissues, and organisms. Metabolomics has been used in numerous applications in the dairy industry, providing valuable insights and aiding in various aspects of production, quality control, and product development. By harnessing the power of metabolomics, the dairy industry can improve quality control, enhance animal health and welfare, develop innovative products, and meet the ever-evolving demands of consumers.<\/strong><\/p>\r\n","keywords":"Authentication, Mass spectroscopy, NMR, Quality","article_type":"1","status":"Y","price_status":"F","reference":"

Agin A, Heintz D, Ruhland E, de La Barca JC, Zumsteg J et al<\/em>., 2016. Metabolomics: An overview. From basic principles to potential biomarkers (part 1). Med Nucleaire, 40(1): 4-10, doi: 10.1016\/j.mednuc.2015.12.006<\/a><\/p>\r\n\r\n

Andreotti G, Lamanna R, Trivellone E and Motta A, 2002. 13C NMR spectra of TAG: An easy way to distinguish milks from different animal species. J Am Oil Chem Soc, 79(2): 123-127, doi: 10.1007\/s11746-002-0445-2<\/a><\/p>\r\n\r\n

Andreotti G, Trivellone E and Motta A, 2006. Characterization of buffalo milk by 31P-nuclear magnetic resonance spectroscopy. J Food Compost Anal, 19(8): 843-849, doi: 10.1016\/j.jfca.2006.03.014<\/a><\/p>\r\n\r\n

Andreotti G, Trivellone E, Lamanna R, Di Luccia A and Motta A, 2000. Milk identification of different species: 13C-NMR spectroscopy of triacylglycerols from cows and buffaloes’ milks. J Dairy Sci, 83(11): 2432-2437, doi: 10.3168\/jds.S0022-0302(00)75133-2<\/a><\/p>\r\n\r\n

Avondo M, Pennisi P, Lanza M, Pagano RI, Valenti B et al<\/em>., 2015. Effect of the αs1-casein genotype and its interaction with diet degradability on milk production, milk quality, metabolic and endocrinal response of Girgentana goats. Small Rumin Res, 123(1): 136-141, doi: 10.1016\/j.smallrumres.2014.10.015<\/a><\/p>\r\n\r\n

Azad T and Ahmed S, 2016. Common milk adulteration and their detection techniques. Int J Food Contam, 3(1): Article no.-22, doi: 10.1186\/s40550-016-0045-3<\/a><\/p>\r\n\r\n

Bartel J, Krumsiek J and Theis FJ, 2013. Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J, 4(5): e201301009, doi: 10.5936\/csbj.201301009<\/a><\/p>\r\n\r\n

Belloque J and Ramos M, 1999. Application of NMR spectroscopy to milk and dairy products. Trends Food Sci Technol, 10(10): 313-320, doi: 10.1016\/S0924-2244(00)00012-1<\/a><\/p>\r\n\r\n

Belloque J, Carrascosa AV and López-Fandiño R, 2001. Changes in phosphoglyceride composition during storage of ultrahigh-temperature milk, as assessed by 31P-nuclear magnetic resonance: possible involvement of thermoresistant microbial enzymes. J Food Prot, 64(6): 850-855, doi: 10.4315\/0362-028X-64.6.850<\/a><\/p>\r\n\r\n

Bittante G, Penasa M and Cecchinato A, 2012. Invited review: Genetics and modeling of milk coagulation properties. J Dairy Sci, 95(12): 6843-6870, doi: 10.3168\/jds.2012-5507<\/a><\/p>\r\n\r\n

Bruschetta G, Notti A, Lando G and Ferlazzo A, 2021. A promising 31P NMR-multivariate analysis approach for the identification of milk phosphorylated metabolites and for rapid authentication of milk samples. Biochem Biophys Rep, 27: 101087, doi: 10.1016\/j.bbrep.2021.101087<\/a><\/p>\r\n\r\n

Cevallos?Cevallos JM, Danyluk MD and Reyes?De?Corcuera JI, 2011. GC?MS based metabolomics for rapid simultaneous detection of Escherichia coli<\/em> O157: H7, Salmonella Typhimurium, Salmonella Muenchen, and Salmonella Hartford in ground beef and chicken. J Food Sci, 76(4): M238-M246, doi: 10.1111\/j.1750-3841.2011.02132.x<\/a><\/p>\r\n\r\n

Chaudhary A and Krishna V, 2021. Region-specific nutritious, environmentally friendly, and affordable diets in India. One Earth, 4(4): 531-544, doi: 10.1016\/j.oneear.2021.03.006<\/a><\/p>\r\n\r\n

Chen Y, Li EM and Xu LY, 2022. Guide to metabolomics analysis: A bioinformatics workflow. Metabolites, 12(4): 357, doi: 10.3390\/metabo12040357<\/a><\/p>\r\n\r\n

Chilliard Y, Rouel J and Leroux C, 2006. Goat's alpha-s1 casein genotype influences its milk fatty acid composition and delta-9 desaturation ratios. Anim Feed Sci Technol, 131(3-4): 474-487, doi: 10.1016\/j.anifeedsci.2006.05.025<\/a><\/p>\r\n\r\n

Coimbra PT, Bathazar CF, Guimarães JT, Coutinho NM, Pimentel TC et al<\/em>., 2020. Detection of formaldehyde in raw milk by Time Domain nuclear magnetic resonance and chemometrics. Food Control, 110: 107006, doi: 10.1016\/j.foodcont.2019.107006<\/a><\/p>\r\n\r\n

Dasenaki ME and Thomaidis NS, 2015. Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography- tandem mass spectrometry. Anal Chim Acta, 880: 103-121, doi: 10.1016\/j.aca.2015.04.013<\/a><\/p>\r\n\r\n

Debnath M, Prasad GB and Bisen PS, 2010. Omics technology. Molecular Diagnostics: Promises and Possibilities, pp 11-31, doi: 10.1007\/978-90-481-3261-4<\/a><\/p>\r\n\r\n

Dettmer K, Aronov PA and Hammock BD, 2007. Mass spectrometry?based metabolomics. Mass Spectrom Rev, 26(1): 51-78, doi: 10.1002\/mas.20108<\/a><\/p>\r\n\r\n

Emwas AH, 2015. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Metabonomics: Methods Mol Biol, 1277: 161-193, doi: 10.1007\/978-1-4939-2377-9_13<\/a><\/p>\r\n\r\n

Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E et al<\/em>., 2019. NMR spectroscopy for metabolomics research. Metabolites, 9(7): 123, doi: 10.3390\/metabo9070123<\/a><\/p>\r\n\r\n

Fakayode SO, Baker GA, Bwambok DK, Bhawawet N, Elzey B et al<\/em>., 2020. Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis1. Appl Spectrosc Rev, 55(8): 647-723, doi: 10.1080\/05704928.2019.1631176<\/a><\/p>\r\n\r\n

Garcia C, Lutz NW, Confort-Gouny S, Cozzone PJ, Armand M et al<\/em>., 2012. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: towards specific interest in human health. Food Chem, 135(3): 1777-1783, doi: 10.1016\/j.foodchem.2012.05.111<\/a><\/p>\r\n\r\n

Górska-Warsewicz H, Rejman K, Laskowski W and Czeczotko M, 2019. Milk and dairy products and their nutritional contribution to the average polish diet. Nutrients, 11(8): 1771, doi: 10.3390\/nu11081771<\/a><\/p>\r\n\r\n

Gowda GAN and Djukovic D, 2014. Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges. Methods Mol Biol, 198: 3-12, doi: 10.1007\/978-1-4939-1258-2_1<\/a><\/p>\r\n\r\n

Handford CE, Campbell K and Elliott CT, 2016. Impacts of milk fraud on food safety and nutrition with special emphasis on developing countries. Compr Rev Food Sci Food Saf, 15(1): 130-142, doi: 10.1111\/1541-4337.12181<\/a><\/p>\r\n\r\n

Hjerpsted JB, Ritz C, Schou SS, Tholstrup T and Dragsted LO, 2014.Effect of cheese and butter intake on metabolites in urine using an untargeted metabolomics approach. Metabolomics, 10: 1176-1185, doi: 10.1007\/s11306-014-0657-7<\/a><\/p>\r\n\r\n

Imperiale S, Morozova K, Ferrentino G and Scampicchio M, 2023. Analysis of milk with liquid chromatography- mass spectrometry: A review. Eur Food Res Technol, 249(4): 861-902, doi: 10.1007\/s00217-022-04197-3<\/a><\/p>\r\n\r\n

JadhavSR, Shah RM, Karpe AV, Beale DJ, Kouremenos KA et al<\/em>., 2019. Identification of Putative Biomarkers Specific to Foodborne Pathogens Using Metabolomics. In: Foodborne Bacterial Pathogens (Bridier, A. eds). Humana, New York, (United States), doi: 10.1007\/978-1-4939-9000-9_12<\/a><\/p>\r\n\r\n

Jansson T, Jensen HB, Sundekilde UK, Clausen MR, Eggers N et al<\/em>., 2014. Chemical and proteolysis-derived changes during long-term storage of lactose-hydrolyzed ultrahigh-temperature (UHT) milk. J Agric Food Chem, 62(46): 11270-11278, doi: 10.1021\/jf504104q<\/a><\/p>\r\n\r\n

Jenkins BJ, Seyssel K, Chiu S, Pan PH, Lin SY et al<\/em>., 2017. Odd chain fatty acids; new insights of the relationship between the gut microbiota, dietary intake, biosynthesis and glucose intolerance. Sci Rep, 7(1): 44845, doi: 10.1038\/srep44845<\/a><\/p>\r\n\r\n

Jia W, Dong X, Shi L and Chu X, 2020. Discrimination of milk from different animal species by a foodomics approach based on high-resolution mass spectrometry. J Agric Food Chem, 68(24): 6638-6645, doi: 10.1021\/acs.jafc.0c02222<\/a><\/p>\r\n\r\n

Kellogg JJ, Kvalheim OM and Cech NB, 2020. Composite score analysis for unsupervised comparison and network visualization of metabolomics data. Anal Chim Acta, 1095: 38-47, doi: 10.1016\/j.aca.2019.10.029<\/a><\/p>\r\n\r\n

Lamanna R, Braca A, Di Paolo E and Imparato G, 2011. Identification of milk mixtures by 1H NMR profiling. Magn Reson Chem, 49: S22-S26, doi: 10.1002\/mrc.2807<\/a><\/p>\r\n\r\n

Liland KH, 2011. Multivariate methods in metabolomics- from pre-processing to dimension reduction and statistical analysis. Trends Anal Chem, 30(6): 827-841, doi: 10.1016\/j.trac.2011.02.007<\/a><\/p>\r\n\r\n

Lu X, Zhao X, Bai C, Zhao C, Lu G et al.<\/em>, 2008. LC-MS-based metabonomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci, 866(1-2): 64-76, doi: 10.1016\/j.jchromb.2007.10.022<\/a><\/p>\r\n\r\n

MacKenzie A, Vyssotski M and Nekrasov E, 2009. Quantitative analysis of dairy phospholipids by 31P NMR. J Am Oil Chem Soc, 86(8): 757-763, doi: 10.1007\/s11746-009-1403-6<\/a><\/p>\r\n\r\n

Marseglia A, Caligiani A, Comino L, Righi F, Quarantelli A et al<\/em>., 2013. Cyclopropyl and ω-cyclohexyl fatty acids as quality markers of cow milk and cheese. Food chem, 140(4): 711-716, doi: 10.1016\/j.foodchem.2013.01.029<\/a><\/p>\r\n\r\n

Monakhova YB, Kuballa T, Leitz J, Andlauer C and Lachenmeier DW, 2012. NMR spectroscopy as a screening tool to validate nutrition labeling of milk, lactose-free milk, and milk substitutes based on soy and grains. Dairy Sci Technol, 92(2): 109-120, doi: 10.1007\/s13594-011-0050-5<\/a><\/p>\r\n\r\n

Muthubharathi BC, Gowripriya T and Balamurugan K, 2021. Metabolomics: small molecules that matter more. Mol Omics, 17(2): 210-229, doi: 10.1039\/D0MO00176G<\/a><\/p>\r\n\r\n

Nagana Gowda GA and Raftery, 2021. NMR-Based Metabolomics. In: Cancer Metabolomics. Advances in Experimental Medicine and Biology (Hu, S. eds). Springer, Cham, (Switzerland), doi: 10.1007\/978-3-030-51652-9_2<\/a><\/p>\r\n\r\n

Pan Z and Raftery D, 2007. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem, 387(2): 525-527, doi: 10.1007\/s00216-006-0687-8<\/a><\/p>\r\n\r\n

Putri SP, Ikram MMM, Sato A, Dahlan HA, Rahmawati D et al<\/em>., 2022. Application of gas chromatography-mass spectrometry-based metabolomics in food science and technology. J Biosci Bioeng, 133(5): 425-435, doi: 10.1016\/j.jbiosc.2022.01.011<\/a><\/p>\r\n\r\n

Ren S, Hinzman AA, Kang EL, Szczesniak RD and Lu LJ, 2015. Computational and statistical analysis of metabolomics data. Metabolomics, 11: 1492-1513, doi: 10.1007\/s11306-015-0823-6<\/a><\/p>\r\n\r\n

Roberts LD, Souza AL, Gerszten RE and Clish CB, 2012. Targeted metabolomics. Curr Protoc Mol Biol, Chapter 30: Unit 30.2.1-24, doi: 10.1002\/0471142727.mb3002s98<\/a><\/p>\r\n\r\n

Rocchetti G and O’Callaghan TF, 2021. Application of metabolomics to assess milk quality and traceability. Curr Opin Food Sci, 40: 168-178, doi: 10.1016\/j.cofs.2021.04.005<\/a><\/p>\r\n\r\n

Rodrigues D, Santos CH, Rocha-Santos TA, Gomes AM, Goodfellow BJ et al.<\/em>, 2011. Metabolic profiling of potential probiotic or synbiotic cheeses by nuclear magnetic resonance (NMR) spectroscopy. J Agric Food Chem, 59(9): 4955-4961, doi: 10.1021\/jf104605r<\/a><\/p>\r\n\r\n

Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD and McLean JA, 2016. Untargeted metabolomics strategies- challenges and emerging directions. J Am Soc Mass Spectrom., 27(12): 1897-1905, doi: 10.1007\/s13361-016-1469-y<\/a><\/p>\r\n\r\n

Segato S, Caligiani A, Contiero B, Galaverna G, Bisutti V et al<\/em>., 2019. 1H NMR metabolic profile to discriminate pasture based alpine Asiago PDO cheeses. Animals, 9(10): 722, doi: 10.3390\/ani9100722<\/a><\/p>\r\n\r\n

Selamat J, Rozani NAA and Murugesu S, 2021. Application of the metabolomics approach in food authentication. Molecules, 26(24): 7565, doi: 10.3390\/molecules26247565<\/a><\/p>\r\n\r\n

Sen C, Ray PR and Bhattacharyya M, 2021. A critical review on metabolomic analysis of milk and milk products. Int J Dairy Technol, 74(1): 17-31, doi: 10.1111\/1471-0307.12745<\/a><\/p>\r\n\r\n

Senyuva HZ, Gökmen V and Sarikaya EA, 2015. Future perspectives in Orbitrap™-high-resolution mass spectrometry in food analysis: A review. Food Addit Contam Part A Chem Anal, 32(10): 1568-1606, doi: 10.1080\/19440049.2015.1057240<\/a><\/p>\r\n\r\n

Smolinska A, Blanchet L, Buydens LM and Wijmenga SS, 2012. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: A review. Anal Chim Acta, 750: 82-97, doi: 10.1016\/j.aca.2012.05.049<\/a><\/p>\r\n\r\n

Springer V, Jacksén J, Ek P, Lista AG and Emmer Å, 2015. Capillary electrophoretic determination of fluoroquinolones in bovine milk followed by off-line MALDI-TOF-MS analysis. Chromatographia, 78: 285-290, doi: 10.1007\/s10337-014-2823-5<\/a><\/p>\r\n\r\n

Suh JH, 2022. Critical review: Metabolomics in dairy science- evaluation of milk and milk product quality. Food Res Int, 154: 110984, doi: 10.1016\/j.foodres.2022.110984<\/a><\/p>\r\n\r\n

Sundekilde UK, Larsen LB and Bertram HC, 2013. NMR-based milk metabolomics. Metabolites, 3(2): 204-222, doi: 10.3390\/metabo3020204<\/a><\/p>\r\n\r\n

Vasavi Y, Parthiban N, Kumar DS, Banji D, Srisutherson N et al.<\/em>, 2011. Heteronuclear multiple bond correlation spectroscopy- An overview. Int J Pharm Tech Res, 3(3): 1410-1422<\/p>\r\n\r\n

Wang L, Yang B, Zhang X and Zheng H, 2017. Novel two-dimensional liquid chromatography- tandem mass spectrometry for the analysis of twenty antibiotics residues in dairy products. Food Anal Methods, 10: 2001-2010, doi: 10.1007\/s12161-016-0763-4<\/a><\/p>\r\n\r\n

Wei W, Li D, Jiang C, Zhang X, Zhang X et al.<\/em>, 2022. Phospholipid composition and fat globule structure II: Comparison of mammalian milk from five different species. Food Chem, 388:132939, doi: 10.1016\/j.foodchem.2022.132939<\/a><\/p>\r\n\r\n

Wu W, Zhang L, Zheng X, Huang Q, Farag MA et al.<\/em>, 2022. Emerging applications of metabolomics in food science and future trends. Food Chem X, 16: 100500, doi: 10.1016\/j.fochx.2022.100500<\/a><\/p>\r\n\r\n

Yuan X, Shi W, Jiang J, Li Z, Fu P et al.<\/em>, 2022. Comparative metabolomics analysis of milk components between Italian Mediterranean buffaloes and Chinese Holstein cows based on LC-MS\/MS technology. PLoS One, 17(1): e0262878, doi: 10.1371\/journal.pone.0262878<\/a><\/p>\r\n\r\n

Zabbia A, Buys EM and De Kock HL, 2012. Undesirable sulphur and carbonyl flavor compounds in UHT milk: A review. Crit Rev Food Sci Nutr, 52(1): 21-30, doi: 10.1080\/10408398.2010.487166<\/a><\/p>\r\n\r\n

Zheng H, Yde CC, Clausen MR, Kristensen M, Lorenzen J et al.<\/em>, 2015. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. J Agric Food Chem, 63(10): 2830-2839, doi: 10.1021\/jf505878a<\/a><\/p>\r\n\r\n

Zou W, Deng L, Wu H, Liu Z, Lu W et al.<\/em>, 2022. Untargeted metabolomics profiling reveals beneficial changes in milk of sows supplemented with fermented compound Chinese medicine feed additive. Animals, 12(20): 2879, doi: 10.3390\/ani12202879<\/a><\/p>\r\n","corresponding_author_email":"tanmayhazra08@gmail.com","received_date":"2024-02-19","accepted_date":"2025-01-08","published_date":"2025-03-18","citation":"Mangroliya PA, Hazra T, Ahuja K, Govani RS and Sindhav RG, 2025. Exploring the potential of metabolomics in the dairy industry: A mini review. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.02024","pageNumber":"","number_view":"3","snippet":"020-24-Rev.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.02024-353","author":"","is_show":"Y","feature_view":"Y"},{"id":"354","issue_id":"0","doi_number":"10.36062\/ijah.2025.02624","title":"Antimicrobial susceptibility testing of Brucella melitensis isolates of human and livestock origin","description":"

Abstract<\/strong><\/p>\r\n\r\n

Brucellosis, a pervasive zoonotic disease caused by various Brucella<\/em> species, poses a substantial threat to global public health with significant economic impact. In India, where brucellosis is endemic, identification and antimicrobial susceptibility testing of Brucella melitensis<\/em> isolates is paramount for effective management. This study aimed to identify a set of 24 nos. of B. melitensis<\/em> isolates of human (n=20) and livestock origin (n=4) by molecular techniques and assess the antimicrobial susceptibility against six antibiotics by employing Kirby Bauer disk diffusion method. The isolates were initially identified by biochemical tests followed by molecular confirmation using AMOS PCR. Antimicrobial susceptibility testing revealed 100% sensitivity to ciprofloxacin and cotrimoxazole, but highlighted intermediate resistance to other antibiotics. Intermediate resistance to doxycycline, gentamicin, streptomycin, and rifampicin was observed in 87.5%, 75%, 29.1%, and 16.67% of the isolates. A host-wise difference in susceptibility pattern was observed with human isolates demonstrating higher intermediate resistance to doxycycline, gentamicin and streptomycin than animal isolates. These findings underscore the imperative for sustained surveillance, prudent antibiotic usage, and innovative treatment modalities to combat brucellosis effectively. Further investigation into the mechanisms of antimicrobial resistance in B. melitensis<\/em> isolates holds promise for devising targeted therapeutic strategies and enhancing public health outcomes.<\/strong><\/p>\r\n","keywords":"AMOS PCR, Antimicrobial resistance, Disc diffusion method, Public health","article_type":"3","status":"Y","price_status":"F","reference":"

Alamian S, Dadar M, Etemadi A, Afshar D and Alamian MM, 2019. Antimicrobial susceptibility of Brucella<\/em> spp. isolated from Iranian patients during 2016 to 2018. Iran J Microbiol, 11(5): 363-367<\/p>\r\n\r\n

Alavi SM and Alavi L, 2013. Treatment of brucellosis: A systematic review of studies in recent twenty years. Caspian J Intern Med, 4(2): 636-641<\/p>\r\n\r\n

Alton GG, Jones LM and Pietz DE, 1975. Laboratory techniques in brucellosis. World Health Organization<\/p>\r\n\r\n

Bricker BJ and Halling SM, 1994. Differentiation of Brucella abortus <\/em>bv. 1, 2, and 4, Brucella melitensis<\/em>, Brucella ovis<\/em>, and Brucella suis <\/em>bv. 1 by PCR. J Clinical Microbiol, 32(11), 2660-2666, doi: 10.1128\/jcm.32.11.2660-2666.1994<\/a><\/p>\r\n\r\n

Corbel M J, 2006. Brucellosis in humans and animals. World Health Organization.<\/p>\r\n\r\n

Dadar M, Alamian S, Brangsch H, Elbadawy M, Elkharsawi AR et al.<\/em>, 2023. Determination of virulence-associated genes and antimicrobial resistance profiles in Brucella<\/em> isolates recovered from humans and animals in Iran using NGS technology. Pathogens, 12(1): 82, doi: 10.3390\/pathogens12010082<\/a><\/p>\r\n\r\n

del Pozo JSG and Solera J, 2015. Treatment of Human Brucellosis- Review of Evidence from Clinical Trials. Updates on Brucellosis, pp 185-99, doi: 10.5772\/61223<\/a><\/p>\r\n\r\n

Deshmukh A, Hagen F, Sharabasi OA, Abraham M, Wilson G et al.<\/em>, 2015. In vitro<\/em> antimicrobial susceptibility testing of human Brucella melitensis<\/em> isolates from Qatar between 2014 - 2015. BMC Microbiol, 15: 121, doi: 10.1186\/s12866-015-0458-9<\/a><\/p>\r\n\r\n

Doimari S, Kumari R, Kumar MS and Singh D, 2019. In vitro<\/em> antimicrobial susceptibility of Brucella<\/em> species isolated from human and animals in India. J Antibiotic Res, 3(1): 102<\/p>\r\n\r\n

Elbehiry A, Aldubaib M, Al Rugaie OA, Marzouk E, Abaalkhail M et al.<\/em>, 2022. Proteomics-based screening and antibiotic resistance assessment of clinical and sub-clinical Brucella<\/em> species: An evolution of brucellosis infection control. PLoS One, 17(1): e0262551, doi: 10.1371\/journal.pone.0262551<\/a><\/p>\r\n\r\n

Godfroid J, Cloeckaert A, Liautard JP, Kohler S, Fretin D et al.<\/em>, 2005. From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet Res, 36(3): 313-326, doi: 10.1051\/vetres:2005003<\/a><\/p>\r\n\r\n

Gültekin E, Uyan?k MH, Albayrak A and K?l?ç S, 2021. Investigation of antibiotic susceptibilities of Brucella<\/em> strains isolated from various clinical samples in eastern Turkey. Eur J Med Res, 26(1): 57, doi: 10.1186\/s40001-021-00527-5<\/a> <\/p>\r\n\r\n

Gupta P, Anil A, Ray P, Rana S and Angrup A, 2023. Brucellosis in pyrexia of unknown origin: reminiscing the forgotten entity. Indian J Med Microbiol, 41: 93-96, doi: 10.1016\/j.ijmmb.2022.10.002<\/a><\/p>\r\n\r\n

Johansen TB, Scheffer L, Jensen VK, Bohlin J and Feruglio SL, 2018. Whole-genome sequencing and antimicrobial resistance in Brucella melitensis<\/em> from a Norwegian perspective. Sci Rep, 8(1): 8538, doi: 10.1038\/s41598-018-26906-3<\/a><\/p>\r\n\r\n

Khan AU, Shell WS, Melzer F, Sayour AE, Ramadan ES et al.<\/em>, 2019. Identification, genotyping and antimicrobial susceptibility testing of Brucella<\/em> spp. isolated from livestock in Egypt. Microorganisms, 7(12): 603, doi: 10.3390\/microorganisms7120603<\/a><\/p>\r\n\r\n

Laine CG, Johnson VE, Scott HM and Arenas-Gamboa AM, 2023. Global Estimate of human brucellosis incidence. Emerg Infect Dis, 29(9): 1789-1797, doi: 10.3201\/eid2909.230052<\/a> <\/p>\r\n\r\n

López-Goñi I, García-Yoldi D, Marín CM, de Miguel MJ, Barquero-Calvo E et al.<\/em>, 2011. New Bruce-ladder multiplex PCR assay for the biovar typing of Brucella suis<\/em> and the discrimination of Brucella suis<\/em> and Brucella canis<\/em>. Vet Microbiol, 154(1-2): 152-155, doi: 10.1016\/j.vetmic.2011.06.035<\/a><\/p>\r\n\r\n

López-Goñi I, García-Yoldi D, Marín CM, de Miguel MJ, Muñoz PM et al.<\/em>, 2008. Evaluation of a multiplex PCR assay (Bruce-ladder) for molecular typing of all Brucella<\/em> species, including the vaccine strains. J Clin Microbiol, 46(10): 3484-1487, doi: 10.1128\/JCM.00837-08<\/a><\/p>\r\n\r\n

Pandit DP and Pandit PT, 2013. Human Brucellosis: Are we neglecting an enemy at the backyard? Medical J DY Patil Univ, 6(4): 350, doi: 10.4103\/0975-2870.118265<\/a><\/p>\r\n\r\n

Pappas G, Solera J, Akritidis N and Tsianos E, 2005. New approaches to the antibiotic treatment of brucellosis. Int J Antimicrob Agents, 26(2): 101-105, doi: 10.1016\/j.ijantimicag.2005.06.001<\/a><\/p>\r\n\r\n

Pappas G, Papadimitriou P, Akritidis N, Christou L and Tsianos EV, 2006. The new global map of human brucellosis. Lancet Infect Dis, 6(2): 91-99, doi: 10.1016\/S1473-3099(06)70382-6<\/a><\/p>\r\n\r\n

Ranjbar M, 2015. Treatment of brucellosis. In: Updates on Brucellosis, pp 171-184<\/p>\r\n\r\n

Saavedra MJ, Ballem A, Queiroga C and Fernandes C, 2019. Etiology: The genus Brucella<\/em>. Brucellosis in Goats and Sheep: An Endemic and Re-Emerging Old Zoonosis in the 21st Century, pp 21-58<\/p>\r\n\r\n

Trott DJ, Abraham S and Adler B, 2018. Antimicrobial resistance in Leptospira<\/em>, Brucella<\/em>, and other rarely investigated veterinary and zoonotic pathogens. Microbiol Spectr, 6(4), doi: 10.1128\/microbiolspec.ARBA-0029-2017<\/a><\/p>\r\n\r\n

Wareth G, El-Diasty M, Abdel-Hamid NH, Holzer K, Hamdy MER et al.<\/em>, 2021. Molecular characterization and antimicrobial susceptibility testing of clinical and non-clinical Brucella melitensis<\/em> and Brucella abortus<\/em> isolates from Egypt. One Health, 13: 100255, doi: 10.1016\/j.onehlt.2021.100255<\/a><\/p>\r\n\r\n

Yousefi-Nooraie R, Mortaz-Hejri S, Mehrani M and Sadeghipour P, 2012. Antibiotics for treating human brucellosis. Cochrane Database Syst Rev, 10(10): CD007179, doi: 10.1002\/14651858.CD007179.pub2<\/a><\/p>\r\n","corresponding_author_email":"sumanvph@gmail.com","received_date":"2024-03-29","accepted_date":"2025-01-16","published_date":"2025-03-18","citation":"Ayoub H, Mehta R, Singh V, Thomas P, Dhanze H, Bhilegaonkar KN and Kumar MS, 2025. Antimicrobial susceptibility testing of Brucella melitensis isolates of human and livestock origin. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.02624","pageNumber":"","number_view":"5","snippet":"026-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.02624-354","author":"","is_show":"Y","feature_view":"Y"},{"id":"355","issue_id":"0","doi_number":"10.36062\/ijah.2025.06524","title":"Blockchain technology for Indian dairy industry: A sustainable food safety model","description":"

Abstract<\/strong><\/p>\r\n\r\n

India is the leading milk producer nation yet faces adulteration in different stages of the supply chain. Consumers’ consciousness towards quality food products has increased in recent years. However, adulteration in the dairy industry is being continuously reported. Faulty animal husbandry and processing practices are the major reasons for the compromised quality of milk and milk products. Such unhealthy practices may diminish consumers’ faith in processed dairy products. This may be dealt with strict food safety regulations, standard production and processing techniques. Animal-derived products that are transparent and traceable, with end-to-end detailed information, bring trust to consumers. Blockchain technology (BCT) is a revolutionary technique that may help combat these aspects in the dairy supply chain. The main aim of this review is to lay out the concepts, techniques, and future prospects of BCT as a sustainable food safety model from an Indian perspective. In addition to this, the background of the Indian dairy industry has also been briefly discussed for better insights into the compatibility of BCT in India. There is a lack of technological infrastructure, finance, human competency, knowledge and understanding of smart technology and resistance from small-scale dairy farmers. For the introduction of BCT in the dairy industry, all the stakeholders must have the basic know-how and grasp of the Blockchain process. BCT, IoT, AI, and management decisions based on raw data are expected to significantly improve the use of technology in dairying for improved food safety in Indian contexts.<\/strong><\/p>\r\n","keywords":"Blockchain technology, Consumers, Food safety, Indian dairy industry","article_type":"1","status":"Y","price_status":"F","reference":"

Adele Peter and Fast Company, 2017. In China, You Can Track Your Chicken On–You Guessed It– The Blockchain<\/a>. Accessed at https:\/\/www.fastcompany.com\/40515999\/in-china-you-can-track-your-chicken-on-you-guessed-it-the-blockchain<\/a><\/p>\r\n\r\n

Aggarwal R, 2011. Developing a global mindset: integrating demographics, sustainability, technology, and globalization. J Teach Int Bus, 22(1): 51-69, doi: 10.1080\/08975930.2011.585920<\/a><\/p>\r\n\r\n

Banerjee A, 2022. Dairying systems in India. Available at: https:\/\/www.fao.org\/3\/T3080T\/t3080T07.htm<\/a><\/p>\r\n\r\n

Bhardwaj S and Kaushik M, 2018. Blockchain- Technology to Drive the Future. In Smart Computing and Informatics: Proceedings of the First International Conference on SCI 2016, Volume 2, pp 263-271. Springer Singapore, doi: 10.1007\/978-981-10-5547-8_28<\/a><\/p>\r\n\r\n

Birthal PS, Chand R, Joshi PK, Saxena R, Rajkhowa P et al.<\/em>, 2017. Formal versus informal: efficiency, inclusiveness and financing of dairy value chains in Indian Punjab. J Rural Stud, 54: 288-303, doi: 10.1016\/j.jrurstud.2017.06.009<\/a><\/p>\r\n\r\n

Biscotti A, Giannelli C, Keyi CFN, Lazzarini R, Sardone R et al.<\/em>, 2020. Internet of Things and Blockchain technologies for food safety systems. IEEE International Conference on Smart Computing (SMARTCOMP)<\/em>, pp 440-445, IEEE, doi: 10.1109\/SMARTCOMP50058.2020.00091<\/a><\/p>\r\n\r\n

Blockchain Council, 2024. Top 10 Countries Leading Blockchain Technology in the World. Available in: https:\/\/www.blockchain-council.org\/blockchain\/top-10-countries-leading-blockchain-technology-in-the-world\/<\/a> (Accessed on: 13. 02. 2024)<\/p>\r\n\r\n

Bumblauskas D, Mann A, Dugan B and Rittmer J, 2020. A blockchain use case in food distribution: Do you know where your food has been? Int J Info Manage, 52: 102008, doi: 10.1016\/j.ijinfomgt.2019.09.004<\/a><\/p>\r\n\r\n

Bunge J, 2017. Latest use for a bitcoin technology: tracing turkeys from farm to table. The Wall Street Journal<\/p>\r\n\r\n

Campbell A, 2017. Sustainability from paddock to plate. Project: Sustainable Food Systems<\/p>\r\n\r\n

Casino F, Kanakaris V, Dasaklis TK, Moschuris S, Stachtiaris S et al.<\/em>, 2021. Blockchain-based food supply chain traceability: A case study in the dairy sector. Int J Prod Res, 59(19): 5758-5770, doi: 10.1080\/00207543.2020.1789238<\/a><\/p>\r\n\r\n

Chand P, Sirohi S and Sirohi SK, 2015. Development and application of an integrated sustainability index for small-holder dairy farms in Rajasthan, India. Ecolog Indic, 56: 23-30, doi: 10.1016\/j.ecolind.2015.03.020<\/a><\/p>\r\n\r\n

Choi TM, 2021. Creating all-win by Blockchain technology in supply chains: impacts of agents’ risk attitudes towards cryptocurrency. J Operat Res Soc, 72(11): 2580-2595, doi: 10.1080\/01605682.2020.1800419<\/a><\/p>\r\n\r\n

Cole R, Stevenson M and Aitken J, 2019. Blockchain technology: implications for operations and supply chain management. Supply Chain Manag Int J, 24(4): 469-483, doi: 10.1108\/SCM-09-2018-0309<\/a><\/p>\r\n\r\n

Coleman L, 2021. Blockchain to trace meat through supply chain. Available in: https:\/\/www.ccn.com\/farmers-cooperative-uses-blockchain-to-trace-meat-through-supply-chain\/<\/a> (Accessed on 15.02. 2024)<\/p>\r\n\r\n

Daud AR, Putro US and Basri MH, 2015. Risks in milk supply chain; A preliminary analysis on smallholder dairy production. Livest Res Rural Develop, 27(7): 1-14<\/p>\r\n\r\n

Davis J and Rylance, C, 2005. Addressing poverty through local economic and enterprise development: A review of conceptual approaches and practice. Working Paper 3, Natural Resources Institute<\/p>\r\n\r\n

De Las Morenas J, García A and Blanco J, 2014. Prototype traceability system for the dairy industry. Comput Elect Agric, 101: 34-41, doi: 10.1016\/j.compag.2013.12.011<\/a><\/p>\r\n\r\n

Erickson PS and Kalscheur KF, 2020. Nutrition and feeding of dairy cattle. Anim Agric: 157-180, doi: 10.1016\/B978-0-12-817052-6.00009-4<\/a><\/p>\r\n\r\n

Fan ZP, Wu XY and Cao BB, 2022. Considering the traceability awareness of consumers: Should the supply chain adopt the Blockchain technology? Annals Operat Res, 1-24, doi: 10.1007\/s10479-020-03729-y<\/a><\/p>\r\n\r\n

Fang C and Stone WZ, 2021. An ecosystem for the dairy logistics supply chain with Blockchain technology. International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp 1-6. IEEE, doi: 10.1109\/ICECCME52200.2021.9591146<\/a><\/p>\r\n\r\n

Fröhling A, Wienke M, Rose-Meierhöfer S and Schlüter O, 2010. Improved method for mastitis detection and evaluation of disinfectant efficiency during milking process. Food Bioprocess Tech, 3: 892-900, doi: 10.1007\/s11947-010-0366-9<\/a><\/p>\r\n\r\n

Galvez JF, Mejuto JC and Simal-Gandara J, 2018. Future challenges on the use of Blockchain for food traceability analysis. TrAC Trends Anal Chem, 107: 222-232, doi: 10.1016\/j.trac.2018.08.011<\/a><\/p>\r\n\r\n

Gorton M, Dumitrashko M and White J, 2006. Overcoming supply chain failure in the agri-food sector: A case study from Moldova. Food Policy, 31(1): 90-103, doi: 10.1016\/j.foodpol.2005.08.003<\/a><\/p>\r\n\r\n

Gowane GR, Gadekar YP, Prakash V, Kadam V, Chopra A et al.<\/em>, 2017. Climate change impact on sheep production: growth, milk, wool, and meat. Sheep Production Adapting to Climate Change, pp 31-69<\/p>\r\n\r\n

Henchion MM, Regan Á, Beecher M and Macken Walsh Á, 2022. Developing ‘smart’ dairy farming responsive to farmers and consumer-citizens: A review. Animals, 12(3): 360, doi: 10.3390\/ani12030360<\/a><\/p>\r\n\r\n

Jagtap S and Rahimifard S, 2019. The digitisation of food manufacturing to reduce waste- case study of a ready meal factory. Waste Manage, 87: 387-397, doi: 10.1016\/j.wasman.2019.02.017<\/a><\/p>\r\n\r\n

Javaid M, Haleem A, Singh RP and Suman R, 2022. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int J Intelligent Networks, 3: 150-164, doi: 10.1016\/j.ijin.2022.09.004<\/a><\/p>\r\n\r\n

Jha SN, Jaiswal P, Grewal MK, Gupta M and Bhardwaj R, 2016. Detection of adulterants and contaminants in liquid foods- A review. Critic Rev Food Sci Nut, 56(10): 1662-1684, doi: 10.1080\/10408398.2013.798257<\/a><\/p>\r\n\r\n

JD.com Blog, 2018. JD Blockchain Open Platform. <\/cite>https:\/\/corporate.jd.com › What Is New Detail<\/cite><\/p>\r\n\r\n

Kamble SS, Gunasekaran A and Gawankar SA, 2020. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int J Prod Econ, 219: 179-194, doi: 10.1016\/j.ijpe.2019.05.022<\/a><\/p>\r\n\r\n

Kamilaris A, Fonts A and Prenafeta-Bold? FX, 2019. The rise of Blockchain technology in agriculture and food supply chains. Trends Food Sci Tech, 91: 640-652, doi: 10.1016\/j.tifs.2019.07.034<\/a><\/p>\r\n\r\n

Kayikci Y, Subramanian N, Dora M and Bhatia MS, 2022. Food supply chain in the era of Industry 4.0: Blockchain technology implementation opportunities and impediments from the perspective of people, process, performance, and technology. Prod Plan Contr, 33(2-3): 301-321, doi: 10.1080\/09537287.2020.1810757<\/a><\/p>\r\n\r\n

Kent DJ, Chauhan K, Boor KJ, Wiedmann M and Martin NH, 2016. Spore test parameters matter: mesophilic and thermophilic spore counts detected in raw milk and dairy powders differ significantly by test method. J Dairy Sci, 99(7): 5180-5191, doi: 10.3168\/jds.2015-10283<\/a><\/p>\r\n\r\n

Khan MSH, Hasan M and Clement CK, 2012. Barriers to the introduction of ICT into education in developing countries: The example of Bangladesh. Int J Instruc, 5(2): 61-80<\/p>\r\n\r\n

Khan MA, Chander M and Bardhan D, 2013. Willingness to pay for cattle and buffalo insurance: An analysis of dairy farmers in central India. Trop Anim Health Prod, 45: 461-468, doi: 10.1007\/s11250-012-0240-z<\/a><\/p>\r\n\r\n

Khanna A, Jain S, Burgio A, Bolshev V and Panchenko V, 2022. Blockchain-enabled supply chain platform for Indian dairy industry: safety and traceability. Foods, 11(17): 2716, doi: 10.3390\/foods11172716  <\/a><\/p>\r\n\r\n

Kumar TN, Das S and Gulati A, 2022. Dairy value chain. Agricultural Value Chains in India, 195<\/p>\r\n\r\n

Kumar A, Singh AK, Kumar S, Kumar S, Kisku U et al.<\/em>, 2023. Structural analysis of agroforestry practices on farmer field in Jaunpur district of Uttar Pradesh. Annals Forest Res, 66(1): 3949-3962<\/p>\r\n\r\n

Kumar P, 2024. Blockchain technology. Available in: https:\/\/deep.denpower.org\/lesson-3-information-technology.html<\/a>. (Accessed on 06.02. 2024)<\/p>\r\n\r\n

Lemma DH, Mengistu A, Kuma T and Kuma B, 2018. Improving milk safety at farm-level in an intensive dairy production system: relevance to smallholder dairy producers. Food Qual Saf, 2(3): 135-143, doi: 10.1093\/fqsafe\/fyy009<\/a><\/p>\r\n\r\n

Li Z, Wang WM, Liu G, Liu L, He J et al.<\/em>, 2018. Toward open manufacturing: A cross-enterprises knowledge and services exchange framework based on Blockchain and edge computing. Indust Manag Data Syst, 118(1): 303-320, doi: 10.1108\/IMDS-04-2017-0142<\/a><\/p>\r\n\r\n

Long TB, Blok V and Coninx I, 2016. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: evidence from the Netherlands, France, Switzerland and Italy. J Clean Prod, 112: 9-21, doi: 10.1016\/j.jclepro.2015.06.044<\/a><\/p>\r\n\r\n

Madhuri C, Janjirala S, Koppula P, Haripriya J and Jindam R, 2023. Blockchain based milk delivery platform for stallholder dairy farmers: enforcing transparency and fair payment. Turkish J Comp Mathe Educ, 14(2): 926-942, doi: 10.17762\/turcomat.v14i2.13883 <\/a><\/p>\r\n\r\n

Mangla SK, Kazancoglu Y, Ekinci E, Liu M, Özbiltekin M et al.<\/em>, 2021. Using system dynamics to analyze the societal impacts of Blockchain technology in milk supply chains refer. Transport Res Part E: Logistics and Transportation Review, 149, 102289, doi: 10.1016\/j.tre.2021.102289<\/a><\/p>\r\n\r\n

Miranda MG and Ramachandran S, 2014. A detailed study on the milk supply chain process. Indian J Sci Tech, 7(S3): 16-18<\/p>\r\n\r\n

NDDB, 2024. Operation Flood. National Dairy Development Board. Available at: https:\/\/www.nddb.coop\/about\/genesis\/flood<\/a><\/p>\r\n\r\n

Nagpal R, Behare PV, Kumar M, Mohania D, Yadav M et al.<\/em>, 2012. Milk, milk products, and disease free health: An updated overview. Critic Rev Food Sci Nut, 52(4): 321-333, doi: 10.1080\/10408398.2010.500231<\/a><\/p>\r\n\r\n

Nandi R, Bokelmann W, Gowdru NV and Dias G, 2017. Factors influencing consumers’ willingness to pay for organic fruits and vegetables: empirical evidence from a consumer survey in India. J Food Products Market, 23(4): 430-451, doi: 10.1080\/10454446.2015.1048018<\/a><\/p>\r\n\r\n

Nia SR, Dordevic D, Hurschler M, Grossenbacher S and Stiller B, 2021. A Blockchain-based supply chain tracing for the swiss dairy use case. 2nd International Conference on Societal Automation (SA), pp 1-8, IEEE, doi:  10.1109\/SA51175.2021.9507182<\/a><\/p>\r\n\r\n

NITI Ayog (2020). Blockchain: The India Strategy. Available in https:\/\/www.niti.gov.in\/sites\/default\/files\/202001\/Blockchain_The_India_Strategy_Part_I.pdf<\/a>. (Accessed on 10.01.2024)<\/p>\r\n\r\n

Pal M, Devrani M and Pinto S, 2018. Significance of hygienic processing of milk and dairy products. Madridge J Food Tech, 3(2): 133-137, doi: 10.18689\/mjft-1000120<\/a><\/p>\r\n\r\n

Paliwal V, Chandra S and Sharma S, 2020. Blockchain technology for sustainable supply chain management: A systematic literature review and a classification framework. Sustainability, 12(18): 7638, doi: 10.3390\/su12187638<\/a><\/p>\r\n\r\n

Pandey S, Mishra S, Jha AK and Pandey HO, 2024. Women in Indian dairy farming business: significance, challenges, and way forward. Int J Vet Sci Anim Husb, 9(1): 701-708, doi: 10.22271\/veterinary.2024.v9.i1Sj.1111<\/a><\/p>\r\n\r\n

Pant RR, Prakash G and Farooquie JA, 2015. A framework for traceability and transparency in the dairy supply chain networks. Procedia-Social and Behavioral Sciences, 189: 385-394 doi: 10.1016\/j.sbspro.2015.03.235<\/a><\/p>\r\n\r\n

Pournader M, Shi Y, Seuring S and Koh SL, 2020. Blockchain applications in supply chains, transport and logistics: A systematic review of the literature. Int J Prod Res, 58(7): 2063-2081, doi: 10.1080\/00207543.2019.1650976<\/a><\/p>\r\n\r\n

Poonia A, Jha A, Sharma R, Singh HB, Rai AK et al.<\/em>, 2017. Detection of adulteration in milk: A review. Int J Dairy Tech, 70(1): 23-42, doi: 10.1111\/1471-0307.12274<\/a><\/p>\r\n\r\n

Raina V, Sharma N, Khajuria S, Kumar K, Choudhary S et al<\/em>., 2017. Training needs of dairy farmers. Int J Agric, Environ Biotechnol, 10(2): 245-251, doi: 10.5958\/2230-732X.2017.00029.8<\/a><\/p>\r\n\r\n

Rajendran K and Mohanty S, 2004. Dairy cooperatives and milk marketing in India: constraints and opportunities. J Food Distrib Res, 35(856-2016-56967): 34-41, doi: 10.22004\/ag.econ.27233<\/a><\/p>\r\n\r\n

Sachi S, Ferdous J, Sikder MH and Hussani SAK, 2019. Antibiotic residues in milk: past, present, and future. J Advan Vet Anim Res, 6(3): 315, doi: 10.5455\/javar.2019.f350<\/a><\/p>\r\n\r\n

Sidhu K and Kaur S, 2006. Development of entrepreneurship among rural women. J Social Sci, 13(2): 147-149, doi: 10.1080\/09718923.2006.11892543<\/a><\/p>\r\n\r\n

Singaravadivelan A, Sachin PB, Harikumar S, Vijayakumar P, Vindhya MV et al.<\/em>, 2023. Life cycle assessment of greenhouse gas emission from the dairy production system. Trop Anim Health Prod, 55(5): 320, doi: 10.1007\/s11250-023-03748-4<\/a><\/p>\r\n\r\n

Singh AK, Bhakat C, Ghosh MK and Dutta TK, 2021a. Technologies used at advanced dairy farms for optimizing the performance of dairy animals: A review. Spanish J Agric Res, 19(4): e05R01, doi: 10.5424\/sjar\/2021194-17801<\/a><\/p>\r\n\r\n

Singh AK, Bhakat C, Mandal DK, Mandal A, Rai S et al.<\/em>, 2020. Effect of reducing energy intake during dry period on milk production, udder health and body condition score of Jersey crossbred cows at tropical lower Gangetic region. Trop Anim Health Prod, 52: 1759-1767, doi:  10.1007\/s11250-019-02191-8<\/a><\/p>\r\n\r\n

Singh AK, 2022. A comprehensive review on subclinical mastitis in dairy animals: pathogenesis, factors associated, prevalence, economic losses and management strategies. CABI Reviews, doi: 10.1079\/cabireviews20221705<\/a><\/p>\r\n\r\n

Singh AK, 2021. Advancements in management practices from far-off dry period to initial lactation period for improved production, reproduction, and health performances in dairy animals: A review. Int J Livest Res, 11(3): 25-41, doi: 10.5455\/ijlr.20200827114032<\/a><\/p>\r\n\r\n

Singh AK, Bhakat C, Mandal DK, Mandal A, Chaterjee A et al.<\/em>, 2021b. Factors associated with negative energy balance and its effect on behavior and productionperformance of dairy cows: A Review. Iranian J Appl Anim Sci, 11(4): 641-653<\/p>\r\n\r\n

Singhal P, Kaushik G, Hussain CM and Chel A, 2020. Food safety issues associated with milk: A review. In book: Safety Issues in Beverage Production, pp 399-427, doi: 10.1016\/B978-0-12-816679-6.00012-7<\/a><\/p>\r\n\r\n

Singh J and Singh H, 2015. Continuous improvement philosophy- literature review and directions. Benchmarking: Int J, 22(1): 75-119,  doi: 10.1108\/BIJ-06-2012-0038<\/a><\/p>\r\n\r\n

Sodhi M, Mukesh M, Kataria RS, Mishra BP and Joshii BK, 2012. Milk proteins and human health: A1\/A2 milk hypothesis. Indian J Endocrinol Metab, 16(5): 856, doi: 10.4103\/2230-8210.100685<\/a><\/p>\r\n\r\n

Sristy A, 2021. Blockchainin the food supply chain- What does the future look like? Available in https:\/\/tech.walmart.com\/content\/walmart-global-tech\/en_us\/news\/articles\/blockchain-in-the-food-supply-chain.html<\/a>. (Accessed on 30.10 2023)<\/p>\r\n\r\n

Tian F, 2017. A supply chain traceability system for food safety based on HACCP Blockchain and Internet of Things. In 2017 International conference on service systems and service management, pp 1-6, IEEE<\/p>\r\n\r\n

Varavallo G, Caragnano G, Bertone F, Vernetti-Prot L and Terzo O, 2022. Traceability platform based on green Blockchain: An application case study in dairy supply chain. Sustainability, 14(6): 3321, doi: 10.3390\/su14063321<\/a><\/p>\r\n\r\n

Varriale V, Cammarano A, Michelino F and Caputo M, 2023. Integrating Blockchain, RFID and IoT within a cheese supply chain: A cost analysis. J Indust Info Integ, 34: 100486,  doi: 10.1016\/j.jii.2023.100486<\/a><\/p>\r\n\r\n

Verde MT, Bonavolontàn F, Liccardo A , Lamonaca F , Di Stasio E et al.<\/em>, 2023. A smart combination of IoT and Blockchain enabling technologies to measure and improve workplace safety in dairy farm. ACTA IMEKO, 12(4): Article no.-38, doi: 10.21014\/actaimeko.v12i4.1634<\/a><\/p>\r\n\r\n

Versino F, Ortega F, Monroy Y, Rivero S, López OV et al.<\/em>, 2023. Sustainable and bio-based food packaging: A review on past and current design innovations. Foods, 12(5): 1057, doi: 10.3390\/foods12051057<\/a><\/p>\r\n\r\n

Vincent D, Karthika M, George J and Joy J, 2022. A Conception of Blockchain Platform for Milk and Dairy Products Supply Chain in an Indian Context. In Emerging IT\/ICT and AI Technologies Affecting Society, pp 201-217. Singapore: Springer Nature Singapore<\/p>\r\n\r\n

World Health Organization (WHO), 2016. World Health Statistics 2016 [OP]: Monitoring Health for the Sustainable Development Goals (SDGs). World Health Organization<\/p>\r\n\r\n

Zelbst PJ, Green KW, Sower VE and Bond PL, 2020. The impact of RFID, IIoT, and Blockchain technologies on supply chain transparency. J Manufact Tech Manag, 31(3): 441-457, doi: 10.1108\/JMTM-03-2019-0118<\/a><\/p>\r\n\r\n

Zhao G, Liu S, Lopez C, Lu H, Elgueta S et al.<\/em>, 2019. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Comput Indust, 109: 83-99, doi: 10.1016\/j.compind.2019.04.002<\/a><\/p>\r\n","corresponding_author_email":"amitkumarsingh5496@gmail.com","received_date":"2024-05-03","accepted_date":"2025-01-19","published_date":"2025-03-18","citation":"Kisku U, Singh AK, Barman B, Mohammad A, Bhakat C, Pola A and Meenia P, 2025. Blockchain technology for Indian dairy industry: A sustainable food safety model. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.06524","pageNumber":"","number_view":"4","snippet":"065-24-Rev.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.06524-355","author":"","is_show":"Y","feature_view":"Y"},{"id":"356","issue_id":"0","doi_number":"10.36062\/ijah.2025.09324","title":"Surgical management of bilateral mandibular fractures with intraosseous wiring in dogs","description":"

Abstract<\/strong><\/p>\r\n\r\n

Fractures are very common in dogs and usually involve both sides of the mandible. The majority of fractures occur due to trauma following road accidents, falls from heights, or fighting injuries. Various techniques have been used for the management of mandibular fracture in dogs, including tape muzzles, circumferential wiring, interdental wiring, intraoral splinting, intraosseous wiring, external skeletal fixators, and plating. The present study describes the surgical treatments of bilateral mandibular fractures in eight dogs presented to the Surgery OPD, TVCC, BVC, Patna, with a history of bleeding from the mouth, reluctant to eat, and persistently open mouth after injury. Based on the history, clinical, and radiological examinations, the cases were diagnosed as bilateral mandibular fractures, and surgical management was decided. Surgery was carried out under general anesthesia. The oral cavity was aseptically prepared, and the fractured mandibles were reduced by applying steady traction on the lower jaw to achieve proper alignment. Bilateral interdental wiring was performed by creating holes with an electric drill for wire placement. Orthopedic wires were threaded through these holes, twisted securely in the bone region, and positioned to bridge the fracture line effectively. Finally, the wires were tightened using a wire twister for proper immobilization. Post-operative antibiotics and analgesics were administered. All animals fully recovered within 30 days without any serious complications.<\/strong><\/p>\r\n","keywords":"Iatrogenic trauma, Immobilization, Intraosseous wiring, Mandibular fracture, Orthopedic wire","article_type":"3","status":"Y","price_status":"F","reference":"

Arcabasso GM and Torres FXS, 2019. Update in mandibular and maxillary fracture management. Vet Time, 49(380):  1510-1511<\/p>\r\n\r\n

Boudrieau RJ, 2020. Maxillofacial Fracture Repair Using Intra-Osseous Wires. In: Verstraete FJ (ed), Oral and Maxillofacial Surgery in Dogs and Cats, Elsevier Science Ltd., Oxford; in press, pp 309-318.e1, doi: 10.1016\/B978-0-7020-7675-6.00041-3<\/a><\/p>\r\n\r\n

Boudrieau RJ, 2012. Mandibular and maxillofacial fractures. In: Veterinary Surgery Small Animal. Ed. by Tobias and Johnston. Saunders Publications, 1054-1077<\/p>\r\n\r\n

Carvalho CM, Rahal SC, dos Reis Mesquita L, Castilho MS, Kano WT et al.<\/em>, 2015. Mandibulectomy for treatment of fractures associated with severe periodontal disease. Can Vet J, 56(3): 292-294<\/p>\r\n\r\n

Castejón-González AC, Stefanovski D, and Reiter AM, 2022. Etiology, clinical presentation, and outcome of mandibular fractures in immature dogs treated with non-invasive or minimally invasive techniques. J Vet Dent, 39(1): 78-88, doi: 10.1177\/08987564211072332<\/a><\/p>\r\n\r\n

Ellis JL, Thomason J, Kebreab E, Zubair K, and France J, 2009. Cranial dimensions and forces of biting in the domestic dog. J Anat, 214(3): 362-373, doi: 10.1111\/j.1469-7580.2008.01042.x<\/a><\/p>\r\n\r\n

Evenhuis JV, Verstraete FJ and Arzi B, 2022. Management of failed stainless steel implants in the oromaxillofacial region of dogs. Front Vet Sci, 9: 992730, doi: 10.3389\/fvets.2022.992730<\/a><\/p>\r\n\r\n

Kitshoff AM, De Rooster H, Ferreira SM and Steenkamp G, 2013. A retrospective study of 109 dogs with mandibular fractures. Vet Comp Orthop Traumatol, 26(1): 01-05, doi: 10.3415\/vcot-12-01-0003<\/a><\/p>\r\n\r\n

Lorinson K, Loebcke S, Skalicky M, Grampp S and Lorinson D, 2008. Signalment differences in bone mineral content and bone mineral density in canine appendicular bones. A cadaveric study. Vet Comp Orthop Traumatol, 21(2): 147-151, doi: 10.3415\/vcot-07-01-0009<\/a><\/p>\r\n\r\n

Marshall WG, Farrell M, Chase D and Carmichael S, 2010. Maxillomandibular circular external skeletal fixation for repair of bilateral fractures of the caudal aspect of the mandible in a dog. Vet Surg, 39(6): 765-770, doi: 10.1111\/j.1532-950X.2010.00714.x<\/a><\/p>\r\n\r\n

Murthy KM, Srinivasa H, Rashmitha BN, Nagaraja VM and Girish MH, 2023. Evaluation of titanium mini plates for repair of mandibular fractures in clinical cases of dogs. Asian J Anim Vet Sci, 6(1): 68-81, doi: 10.9734\/ajravs\/2023\/v6i1233<\/a><\/p>\r\n\r\n

Nicholson I, Wyatt J, Radke H and Langley-Hobbs SJ, 2010. Treatment of caudal mandibular fracture and temporomandibular joint fracture-luxation using a bi-gnathic encircling and retaining device. Vet Comp Orthop Traumatol, 23(2): 102-108, doi: 10.3415\/VCOT-09-03-0034<\/a> <\/p>\r\n\r\n

Rani RU, Sowbarenya C, Arun R, Arulanandam and Vishnurahav RB, 2022. Interdental wiring and epoxy-pin external skeletal fixation for mandibular fracture management in dogs. J     Pharm Innov, 11(4): 247-250<\/p>\r\n\r\n

Sangamitra RKR and Vijay A, 2021. Case study on surgical management of mandibular  fracture in a dog. J Pharm Innov, 10(5): 198-199<\/p>\r\n\r\n

Shamir MH, Leisner S, Klement E, Gonen E and Johnston DE, 2002. Dog bite wounds in dogs and cats: A retrospective study of 196 cases. J Vet Med A Physiol Pathol Clin Med, 49(2): 107-112, doi: 10.1046\/j.1439-0442.2002.jv416.x<\/a><\/p>\r\n\r\n

Smith MM, 2002. Advances in mandibular fracture repair. Proceedings of the American College of Veterinary Surgeons Annual Symposium, San Diego. pp 137-140<\/p>\r\n","corresponding_author_email":"paaku1611@gmail.com","received_date":"2024-08-20","accepted_date":"2025-01-21","published_date":"2025-03-18","citation":"Kumar R, Aakanksha and Kumar B, 2025. Surgical management of bilateral mandibular fractures with intraosseous wiring in dogs. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.09324","pageNumber":"","number_view":"4","snippet":"093-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.09324-356","author":"","is_show":"Y","feature_view":"Y"},{"id":"357","issue_id":"0","doi_number":"10.36062\/ijah.2025.03724","title":"Growth and instability of fish production and marine export of India: An empirical study","description":"

Abstract<\/strong><\/p>\r\n\r\n

India being the 3rd largest fish and aquaculture producing country, its fisheries sector plays a pivotal role in India's economic and nutritional landscape, providing livelihoods to millions of people and contributing significantly to the country's food security. The present study estimates Compound Annual Growth Rates (CAGR), Cuddy-Della Valle index (CDV) and Coefficient of Variation (CV) to analyze the growth and instability in fish production and export of marine products from India for a period of 40 years from 1980 to 2020. The study revealed that CAGR of inland fish production was much higher than that of marine, indicating resource depletion taking place in the marine segment of the Indian fishery. The computation of CAGR based on total quantity of fish exported indicated positive results across all the countries considered in the present study. The countries of Southeast Asia including China followed by USA have achieved highest CAGR in terms of export value of total quantity of fish. The estimates of CDV index based on quantity of total fish exported were highest for the USA and lowest for Japan. Addressing these challenges through sustainable practices and strategic interventions is crucial for ensuring the long-term viability and prosperity of the Indian fisheries sector and diversification of the market to enhance the stability and growth of marine product exports in a rapidly changing global environment.<\/strong><\/p>\r\n","keywords":"Coefficient of variation (CV), Compound growth rate (CGR), Cuddy-Della Valle (CDV) index of instability, Marine products export, Risk assessment","article_type":"2","status":"Y","price_status":"F","reference":"

Cuddy JDA and Della Valle PA, 1978. Measuring the instability in time series data. Oxf Bull Econ Stat, 40(1): 79- 85, doi: 10.1111\/j.1468-0084.1978.mp40001006.x<\/a><\/p>\r\n\r\n

Das A, Kumar NR and Rani P, 2016. Growth, instability and forecast of marine products export from India. Indian J Fish, 63(4): 112-117, doi: 10.21077\/ijf.2016.63.4.32830-17<\/a><\/p>\r\n\r\n

Dash RK and Patra RN, 2014. Marine fisheries in India: issues of growth and instability. IOSR J Econ Financ, 5(2): 40-51, doi: 10.9790\/5933-0524051<\/a><\/p>\r\n\r\n

Government of India (GOI), 2022. Handbook of Fisheries Statistics 2022. Ministry of Fisheries, Animal Husbandry and Dairying, Available in: https:\/\/dof.gov.in\/sites\/default\/files\/202301\/HandbookFisheriesStatistics19012023.pdf<\/a>  (Accessed 16th August 2023)<\/p>\r\n\r\n

Jeyanthi P and Nikita G, 2012. Growth and instability in Indian frozen scampi export. Fish Technol, 49(2): 187-192<\/p>\r\n\r\n

Manjunath N, Lokesha H and Deshmanya BJ, 2017. Direction of trade and changing pattern of Indian marine products exports. Indian J Agric Res, 51(5): 463-467, doi: 10.18805\/IJARe.A-4797<\/a><\/p>\r\n\r\n

Massell BF, 1970. Export instability and economic structure, Am Econ Rev, 60: 618-630<\/p>\r\n\r\n

MPEDA, 2022. Annual Report 2021-22. Available in: https:\/\/mpeda.gov.in\/wp-content\/uploads\/2023\/01\/Annual%20Report%20PDF-21-22.pdf<\/a>  [Accessed 9th August 2023]<\/p>\r\n\r\n

Nisar U, Yongtong M and Kumarb NR. 2020. A competitive analysis of Indian fish export to USA: growth, performance, comparative advantages and instability. Indian J Geo-Mar Sci, 49(5): 790-797<\/p>\r\n\r\n

Parthasarathy G, 1984. Growth rates and fluctuations of agricultural production: A district-wise analysis in Andhra Pradesh. Econo Polit Weekly, 19(26): 74-84<\/p>\r\n\r\n

Salim SS and Biradar RS, 2009. Indian shrimp trade: reflections and prospects in the post WTO era. Asian Fish Sci, 22(2): 805-821, doi: 10.33997\/j.afs.2009.22.2.039<\/a><\/p>\r\n\r\n

Siby KM and Arunachalam P, 2020. Growth, Instability and Demand Elasticity of Indian Fish Exports: Int J Adv Sci Technol, 29(3): 7976-7986<\/p>\r\n\r\n

Singh AJ and Byerlee D, 1990. Relative variability in wheat yields across countries and over time. J Agric Econ, 14(1): 21-32, doi: 10.1111\/j.1477-9552.1990.tb00616.x<\/a><\/p>\r\n\r\n

Singh ND, Krishnan M, Prakash S, Kiresur VR, Sivaramane N et al.<\/em>, 2017. Geographical penetration, composition, unit value realisation, exports competitiveness and market diversification of shrimp exports from India. Econ Aff, 62(4): 663-670, doi: 10.5958\/0976-4666.2017.00080.8<\/a><\/p>\r\n\r\n

Wasim MP, 1999. Growth rates and fluctuations in area, production and productivity: A study of major crops in Sindh. Pakistan Econ Social Rev, 37(2): 155-168<\/p>\r\n\r\n

Weber A and Sievers M, 1983. Observations on the geography of wheat production instability. J Int Agric, 24(3): 201-211<\/p>\r\n","corresponding_author_email":"janasajal78@yahoo.com","received_date":"2024-04-15","accepted_date":"2025-01-23","published_date":"2025-03-18","citation":"Purkait S, Sahu S, Jana S, Biswas O and Venkateswarlu P, 2025. Growth and instability of fish production and marine export of India: An empirical study. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.03724","pageNumber":"","number_view":"3","snippet":"037-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.03724-357","author":"","is_show":"Y","feature_view":"Y"},{"id":"358","issue_id":"0","doi_number":"10.36062\/ijah.2025.12124","title":"Evaluation of the therapeutic efficacy of Yacasyn\u00ae tablet as a platelet supplement in thrombocytopenic dogs","description":"

Abstract<\/strong><\/p>\r\n\r\n

Dogs of different breeds which were presented to the Veterinary Clinical Complex, RIVER, Puducherry, with the clinical signs of anorexia, fever, lethargy, congested or pale mucous membrane lymphadenomegaly, bleeding disorders and tick infestation were suggestive of tick-borne diseases which were included under the study. Diagnosis of the tick-borne disease was done by haemato-biochemical examination and PCR. Haemato-biochemistry revealed significant reduction of the Hb, PCV, TLC and platelet count. Molecular diagnosis revealed B<\/em>. gibsoni<\/em> and H<\/em>. canis <\/em>in the tick-infected dogs, which were treated with standard treatment protocol with the supportive of Tab. Yacasyn as a platelet enhancer. After four weeks of treatment, haemato-biochemistry revealed significant increase in the Hb, PCV, RBC and platelet count without alteration in liver function test and renal function test.<\/strong><\/p>\r\n","keywords":"B. gibsoni, Dog, H. canis, Thrombocytopenia, Yacasyn","article_type":"2","status":"Y","price_status":"F","reference":"

Almendros A and Burchell R, 2021. Multiple complications in a dog infected with Babesia gibsoni<\/em>. Vet Rec Case Rep, 9(3): e126, doi: 10.1002\/vrc2.126<\/a><\/p>\r\n\r\n

Anish RK, Venu R, Rayulu VC, Jacob SS, Srilatha CH et al.<\/em>, 2020. Prevalence and diversity of ixodid tick fauna in domestic animals of Andhra Pradesh state, India. J Entomol Zool Stud, 8: 2346-2351, doi: 10.22271\/j.ento.2020.v8.i5af.7825<\/a><\/p>\r\n\r\n

Bhadesiya CM, Raval SK, Hasnani JJ and Neha R, 2016. Epidemiological aspects of tick infestation by Otobius magnini<\/em> and Dermacentor variabilis<\/em> in dogs of Anand, Gujarat. Environ Ecol, 34(2A): 636-639<\/p>\r\n\r\n

Bhowmik P, Islam S, De A, Tamuly S and Bouragohain L, 2024. Prevalence and molecular characterization of ticks infesting dogs in Agartala, Tripura. Indian J Anim Sci, 94(8): 669-673, doi: 10.56093\/ijans.v94i8.151086<\/a><\/p>\r\n\r\n

Dantas-Torres F and Otranto D, 2015. Further thoughts on the taxonomy and vector role of Rhipicephalus sanguineus<\/em> group ticks. Vet Parasitol, 208: 9-<\/strong>13, doi: 10.1016\/j.vetpar.2014.12.014<\/a><\/p>\r\n\r\n

Dantas-Torres F, Latrofa MS, Ramos RA, Lia RP, Capelli Get al<\/em>., 2018. Biological compatibility between two temperate lineages of brown dog ticks, Rhipicephalus sanguineus<\/em> (sensu lato). Parasit Vectors, 11: 398-<\/strong>408, doi: 10.1186\/s13071-018-2941-2<\/a> <\/p>\r\n\r\n

Day MJ, 2016. Arthropod-Borne Infectious Diseases of the Dog and Cat. 2nd edn., CRC Press, Bristol UK, pp 1-<\/strong>14, doi: 10.1201\/b19686<\/a><\/p>\r\n\r\n

Inokuma H, Okuda M, Ohno K, Shimoda K and Onishi T, 2002. Analysis of the 18S rRNA gene sequence of a Hepatozoon detected in two Japanese dogs. Vet Parasitol, 106(3): 265-271, doi: 10.1016\/s0304-4017(02)00065-1<\/a><\/p>\r\n\r\n

Jena A, Baidya S, Pandit S, Jas R, Mandal SC et al<\/em>., 2021.  Incidence of canine tick vectors and molecular detection of haemoparasites in vectors and hosts.  Indian J Anim Res, 55(10): 1215-1223, doi: 10.18805\/IJAR.B-4229<\/a><\/p>\r\n\r\n

Pasqualetti VB, Gandolfi AM, dos Santos Pessini PG and da Silva EB, 2021. Clinical and hematological changes in dogs with canine monocytic Ehrlichiosis attended in a private clinic in São Bernardo do Campo, São Paulo. J Vet Anim Res, 4: 101<\/p>\r\n\r\n

Peddineni SKS, Vijayalakshmi P, Abiramy Prabavathy A, Devadevi N, Rajkumar K et al<\/em>., 2023. Clinical, haemato-biochemical evaluation and comparison of PCR with conventional blood smear examination for the detection of Babesia gibsoni <\/em>infection in dogs. Ind J Vet Sci Biotech, 19(5): 33-36, doi: 10.48165\/ijvsbt.19.5.06<\/a><\/p>\r\n\r\n

Shitta KB, James-Rugu NN and Badaki JA, 2018. Prevalence of ticks on dogs in Jos, Plateau State, Nigeria. Bayero J Pure Appl Sci, 11(1): 451-454, doi: 10.4314\/bajopas.v11i1.71S<\/a><\/p>\r\n\r\n

Sudhakara Reddy B, Sivajothi S, Varaprasad Reddy LS and Solmon Raju KG, 2016. Clinical and laboratory findings of Babesia infection in dogs. J Parasit Dis, 40: 268-272, doi: 10.1007\/s12639-014-0491-x<\/a><\/p>\r\n\r\n

Taylor MA, Coop RL and Wall RL, 2016. Veterinary Parasitology, 4th edn., Black Well Oxford, United Kingdom, pp 340<\/p>\r\n\r\n

Vidhya MS, Chandrasekar M, Arunkumar S, Subapriya S and Sathish G, 2024. Clinico pathological evaluation of Babesia gibsoni<\/em> associated renal failure in dogs. Indian J Vet Sci Biotechnol, 20(3): 77-81, doi: 10.48165\/ijvsbt.20.3.15<\/a><\/p>\r\n","corresponding_author_email":"devadevivmd@river.edu.in","received_date":"2024-09-18","accepted_date":"2025-01-30","published_date":"2025-03-18","citation":"Sudha Naga Chittitalli A, Devadevi N, Rajkumar K, Vivek S, Vijayalakshmi P and Abiramy alias Prabavathy A, 2025. Evaluation of the therapeutic efficacy of Yacasyn\u00ae tablet as a platelet supplement in thrombocytopenic dogs. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.12124","pageNumber":"","number_view":"5","snippet":"121-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.12124-358","author":"","is_show":"Y","feature_view":"Y"},{"id":"359","issue_id":"0","doi_number":"10.36062\/ijah.2025.13924","title":"Effect of heat stress on physiological responses and concentration of cortisol of Nellore brown lambs in conventional and elevated housing system","description":"

Abstract<\/strong><\/p>\r\n\r\n

The study was conducted to investigate physiological responses and cortisol of Nellore brown lambs housed under conventional and elevated housing systems in summer without climate control. Twenty lambs (age 3-4 months) were divided randomly into two groups in a completely randomized design and ten lambs were maintained under conventional housing system with moorum floor and ten lambs were housed in an elevated housing system with wooden slatted floor for a period of 90 days. All the physiological parameters, rectal temperature, respiration rate and pulse rate were recorded at weekly intervals both morning and evening. Temperature humidity index was recorded daily at 8.30 AM and 2.30 PM. The study revealed that the evening THI was significantly (P<0.05) lower in elevated (85.73±0.31) housing system compared to conventional (86.67±0.32) housing system. Significantly (P<0.05) higher RT (?), RR (breaths\/min), PR (beats\/min) were recorded in lambs maintained under conventional housing system compared to elevated housing system in the morning and evening. Overall cortisol concentration was significantly (P<0.05) high in conventional housing system. Type of housing had significantly influenced physiological responses and cortisol. All the physiological responses were increased from morning to evening with increase in THI in both housing systems. Comparison of housing systems revealed that the animals under conventional housing system were under more heat stress than elevated housing system. It can be concluded that elevated housing system was more beneficial to the lambs in summer season than conventional housing system under intensive system of rearing.<\/strong><\/p>\r\n","keywords":"Conventional housing system, Cortisol, Elevated housing system, Nellore brown lambs, Temperature humidity index.","article_type":"2","status":"Y","price_status":"F","reference":"

Bhatta M, Das D and Ghosh PR, 2014. The effect of ambient temperature on some biochemical profiles of black Bengal goats (Capra aegagrushircus<\/em>) in two different agroclimatic zones in West Bengal, India. IOSR J Pharm Biol Sci, 9 (4): 32-36, doi: 10.9790\/3008-09433236<\/a><\/p>\r\n\r\n

Bhatta R, Swain N, Verma DL and Singh NP, 2005. Effect of housing on physiological responses and energy expenditure of sheep in a semi-arid region of India. Asian-Australas J Anim Sci, 18(8): 1188-1193, doi: 10.5713\/ajas.2005.1188<\/a> <\/p>\r\n\r\n

Chishti<\/a> AA, Khan HM, Rouf Ahmed Pattoo A, Majeed Ganai OA, Shah AA et al<\/em>., 2020. Haemato-biochemical profile of Corriedale ewes in relation to winter housing and feeding interventions in Kashmir region. J Entomol Zool Stud, 8(3): 1988-1992<\/p>\r\n\r\n

Clark JA and McArthur AJ, 1994. Thermal Exchanges. In: Livestock Housing, Wathes CM, Charles DR edn. CAB International, Wallingford, pp97-122<\/p>\r\n\r\n

Divate RT, 2014. Study on effect of different types of flooring material on the growth performance in Osmanabadi kids. MVSc Thesis, Maharashtra Animal and Fishery Sciences University, Nagpur, Maharashtra<\/p>\r\n\r\n

Hooper HB, dos Santos Silva P, de Oliveira SA, Merighe GKF and Negrão JA, 2018. Acute heat stress induces changes in physiological and cellular responses in Saanen goats. Int J Biometeorol, 62: 2257-2265, doi: 10.1007\/s00484-018-1630-3<\/a><\/p>\r\n\r\n

Li FK, Yang Y, Jenna K, Xia CH, Lv SJ et al<\/em>., 2018. Effect of heat stress on the behavioral and physiological patterns of Small-tail Han sheep housed indoors. Trop Anim Health Prod, 50(8): 1893-1901, doi: <\/a>10.1007\/s11250-018-1642-3<\/a><\/p>\r\n\r\n

LPHSI L, 1990. Poultry Heat Stress Indices Agriculture Engineering Technology Guide. Clemson University, Clemson, 29634 (4), USA<\/p>\r\n\r\n

Marai IFM, El-Darawany AA, Fadiel A and Abdel-Hafez MAM, 2007. Physiological traits as affected by heat stress in sheep- A review. Small Rumin Res, 71: 1-12, doi: 10.1016\/j.smallrumres.2006.10.003<\/a><\/p>\r\n\r\n

Rahman A, Nagpaul PK and Singh B, 2013. Effect of two different shelter systems on milk yield and composition, feed intake, feed conversion efficiency and physiological responses in lactating crossbred goats during winter season. Egypt J Sheep Goat Sci, 8(1): 81-87, doi: 10.12816\/0005028<\/a><\/p>\r\n\r\n

Rathwa<\/a> SD, Vasava AA, Pathan MM, Madhira SP, Patel YG et al<\/em>., 2017. Effect of season on physiological, biochemical, hormonal, and oxidative stress parameters of indigenous sheep. Vet world, 10(6): 650-654, doi: 10.14202\/vetworld.2017.650-654<\/a><\/p>\r\n\r\n

Sejian<\/a> V, Maurya VP and Naqvi SM, 2010. Adaptive capability as indicated by endocrine and biochemical responses of  Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment. Int J Biometeorol, 54(6): 653-661, doi: 10.1007\/s00484-010-0341-1<\/a><\/p>\r\n\r\n

Sejian V, Srivastava RS and Varshney VP, 2008. Pineal–adrenal relationship: modulating effects of glucocorticoids on pineal function to ameliorate thermal-stress in goats. Asian-Australas J Anim Sci, 21(7): 988-994, doi: 10.5713\/ajas.2008.70482<\/a> <\/p>\r\n\r\n

 Sharma MC, Mahesh Kumar and Sharma RD, 2021. Textbook of Clinical Veterinary Medicine. Indian Council of Agriculture Research, New Delhi, India, pp30-38<\/p>\r\n\r\n

Singh<\/a> SP, Ramachandran N, Tripathi MK and Bhusan S, 2017. Physiological, biochemical and endocrine response of goat kids maintained on two different floor types in hot-dry weather conditions. Indian J Anim Sci, 87 (2): 223-228, doi: 10.56093\/ijans.v87i2.67755<\/a><\/p>\r\n\r\n

Yamin D, Beena V, Ramnath V, Zarina A, Harikumar S et al<\/em>., 2022. Impact of thermal stress on physiological, behavioural and biochemical parameters in native and crossbred goats. Small Rumin Res, 216: 106794, doi: 10.1016\/j.smallrumres.2022.106794<\/a><\/p>\r\n\r\n

Yasotha A and Sivakumar T, 2013. Effects of flooring system on growth performance of Madras red lambs. Indian Vet J, 90(4): 107-108<\/p>\r\n\r\n

Zaahkouk SAM, Hamed MHA, Abdel Daym SM and Essa RAA, 2004. Effect of housing system on some physiological responses of growing barki lambs. J Agric Sci Mansoura Univ, 29 (6): 3033 – 3050, doi: 10.21608\/jappmu.2004.239170<\/a><\/p>\r\n","corresponding_author_email":"jahnavi.gp194@gmail.com","received_date":"2024-10-01","accepted_date":"2025-03-07","published_date":"2025-04-08","citation":"Jahnavi G, Sreedhar S, Venkata Seshaiah Ch and Subrahmanyeswari B, 2025. Effect of heat stress on physiological responses and concentration of cortisol of Nellore brown lambs in conventional and elevated housing system. Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.13924","pageNumber":"","number_view":"2","snippet":"139-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.13924-359","author":"","is_show":"Y","feature_view":"Y"},{"id":"360","issue_id":"0","doi_number":"10.36062\/ijah.2025.10824","title":"Surgical approach towards cystorrhexis of a non-descript male calf- A case report","description":"

Abstract <\/strong><\/p>\r\n\r\n

The case was represented as a 6-month-old Indian non-descript male calf with a chief complaint of anuria with a distended abdomen for 48 hours. Clinical examination revealed fluid thrill on ballottement of ventro-lateral aspect of abdominal cavity. Moreover, abdominocentesis was done under aseptic conditions, indicating the fluid that resembled urine. The case was assumed to be cystorrhexis, which may have occurred due to obstructive urolithiasis, finally resulting into uroperitoneum. Surgical intervention involved cystorrhaphy and tube cystotomy with Foley's catheter through ventral paramedian site. Administration of supportive medications like appropriate choice of fluid to correct electrolyte and acid-base balance, especially for preventing shock, one broad spectrum antibiotic, anti-inflammatory drug, urinary acidifier and cellulolytic agent like ammonium chloride to the animal in the post-operative days. The calf was recovered after 2 weeks of surgery without any complications<\/strong><\/p>\r\n","keywords":"Cystorrhaphy, Cystorrhexis, Fluid-thrill, Tube Cystotomy, Uroperitoneum","article_type":"3","status":"Y","price_status":"F","reference":"

Islam MS, Rahman MM, Bhuiyan MMU, Shamsuddin M and Islam MT, 2016. Efficacy of oxytetracycline, amoxicillin, sulfamethoxazole and trimethoprim, and tylosin for the treatment of bacterial diseases in cattle and goats.<\/em> Bangladesh J Vet Med, 14(1): 47-51, doi: 10.3329\/bjvm.v14i1.28822<\/a><\/p>\r\n\r\n

Ismail ZB, 2016. Epidural analgesia in cattle, buffalo, and camels. Vet World, 9(12): 1450-1455, doi: 10.14202\/vetworld.2016.1450-1455<\/a><\/p>\r\n\r\n

Kataria C, Sharma AK and Gupta DK, 2022. Epidemiological, hemato-biochemical and therapeutic study on nutritional hemoglobinuria in cattle and buffaloes. Indian J Vet Med, 42(2): 47-54<\/p>\r\n\r\n

Loretti AP, Oliveira LO, de Cruz CEF and Driemeier D, 2003. Clinical and pathological study of an outbreak of obstructive urolithiasis in feedlot cattle in southern Brazil. Pesq Vet Bras, 23(2): 61-64, doi: 10.1590\/S0100-736X2003000200003<\/a><\/p>\r\n\r\n

Mahajan A, Gupta AK, Bhadwal MS, Bhat MA and Bhardwaj HR, 2017. Occurrence and management of obstructive urolithiasis in ruminants. J Anim Res, 7(4): 723-731, doi: 10.5958\/2277-940X.2017.00111.5<\/a><\/p>\r\n\r\n

Ramya NM, Bhagavantappa B, Shivaprakash, Kumar DD, Venkatgiri et al.<\/em>, 2024. Electrocardiographic evaluation of xylazine-etomidate-isoflurane and dexmedetomidine-ketamine-isoflurane anaesthesia under guaifenesin premedication for various surgeries in cattle. Indian J Vet Sci Biotechnol, 20(3): 71-76, doi: 10.48165\/ijvsbt.20.3.14<\/a><\/p>\r\n\r\n

Sharun K, Manjusha KM, Kumar R, Pawde AM, Malik Y et al.<\/em>, 2020. Prevalence of obstructive urolithiasis in domestic animals: An interplay between seasonal predisposition and dietary imbalance. Iraqi J Vet Sci, 35(2): 227-232, doi: 10.33899\/ijvs.2020.126662.1358<\/a><\/p>\r\n\r\n

Shock D, Roche S and Olson M, 2019. A comparative pharmacokinetic analysis of oral and subcutaneous meloxicam administered to postpartum dairy cows. Vet Sci, 6(3): 73, doi: 10.3390\/vetsci6030073<\/a><\/p>\r\n\r\n

Thakur N, Dey S, Verma M, Jacob A, Choudhary SS et al.<\/em>, 2020. Epidemiologic evaluation of urolithiasis in Bareilly area of Uttar Pradesh, India. Biol Rhythm Res, 51(4): 489-495, doi: 10.1080\/09291016.2018.1537547<\/a><\/p>\r\n\r\n

Yohannes G and Tesfay S, 2024. Review on surgical managements of urolithiasis in ruminants. Mathews J Surg, 7(1): 29, doi: 10.30654\/MJS.10029<\/a><\/p>\r\n","corresponding_author_email":"drdghosh08@gmail.com","received_date":"2024-08-29","accepted_date":"2024-12-08","published_date":"2025-03-27","citation":"Mondal S, Pal D, Mahata B, Patra F, Alathi Reddy B, Mohith Raj KP, Sarkar DK, Reddy CB and Ghosh D, 2025. Surgical approach towards cystorrhexis of a non-descript male calf- A case report, Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.10824","pageNumber":"","number_view":"3","snippet":"108-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.10824-360","author":"","is_show":"Y","feature_view":"Y"},{"id":"361","issue_id":"0","doi_number":"10.36062\/ijah.2025.08624","title":"A comparative study of key enzymes in carbohydrate metabolism during embryonic development in Vanaraja and broilers chicks","description":"

Abstract<\/strong><\/p>\r\n\r\n

       The developmental changes from the embryonic to the post-hatching stage appear to be associated with the altered carbohydrate availability resulting from a shift from the high-fat, low-carbohydrate environment of the egg yolk to the low-fat, high-carbohydrate diet normally fed to the chicken after hatching. Hence, a comparative study was carried out in broiler and Vanaraja embryos on key enzymes of gluconeogenesis and HMP pathways, which are vital to ensure an optimal supply of glucose and nucleic acid precursors for embryo survival and early post-hatch life. The activities of Glucose-6-phosphatase(G6Pase) and Fructose 1-6 bisphosphatase (FBPase) were significantly increased towards the growth of the embryos and found to be higher in liver tissues compared to brain tissues of Vanaraja. Both the enzyme activities were found to be higher in Vanaraja compared to broilers. Glucose-6-phosphate dehydrogenase (G6PD) activity decreased significantly in both the tissues towards the growth of the embryo and it was significantly higher in brain tissue compared to liver tissue of broilers. Glucose-6-phosphate dehydrogenase (G6PD) activity was found to be lower in Vanaraja when compared to broilers. Glutathione (GSH) levels significantly decreased in both tissues towards the development of embryos and were significantly higher in Vanaraja embryos compared to broilers. In both the embryos, GSH levels were high in liver compared to brain tissue during embryonic development. Embryo weights were significantly lower in Vanaraja when compared to broilers towards the development of the embryos<\/strong><\/p>\r\n","keywords":"Broiler, Carbohydrate metabolism, Enzymes, Glutathione, Vanaraja breed ","article_type":"3","status":"Y","price_status":"F","reference":"

Abbas SK, Pickard DW, Illingworth D, Storer J, Purdie DW et al.<\/em>, 1986. Measurement of parathyroid hormone?related protein in extracts of fetal parathyroid glands and placental membranes. J Endocrinol, 124(2): 319-325, doi: 10.1677\/joe.0.1240319<\/a><\/p>\r\n\r\n

Bhagavan NV, 2002. Chapter 15 - Carbohydrate Metabolism II: Gluconeogenesis, Glycogen Synthesis and Breakdown, and Alternative Pathways. Medical Biochemistry (4th edn.), pp 275-305<\/p>\r\n\r\n

Burt AM and Wenger BS, 1961. Glucose-6-phosphate dehydrogenase activity in the brain of the developing chick. Dev Biol, 3: 84-95, doi: 10.1016\/0012-1606(61)90011-2<\/a><\/p>\r\n\r\n

Charkey LW, Hougham DF and Kano AK, 1965. Relationship of blood and liver levels of glutathione to early growth of chicks. Poult Sci, 44(1): 186-192, doi: 10.3382\/ps.0440186<\/a><\/p>\r\n\r\n

De Oliveira JE, Uni Z and Ferket PR, 2008. Important metabolic pathways in poultry embryos prior to hatch. World Poult Sci J, 64(4): 488-499, doi: 10.1017\/S0043933908000160<\/a><\/p>\r\n\r\n

Donaldson WE, 1995. Carbohydrate, hatchery stressors affect poult survival. Feedstuffs, 67(14): 16-17<\/p>\r\n\r\n

Ellman GL, 1959. Tissue sulfhydryl groups. Arch Biochem Biophys, 82(1): 70-77, doi: 10.1016\/0003-9861(59)90090-6<\/a><\/p>\r\n\r\n

Farnararo M and Bruni P, 1982. Changes in the G6PDH\/6PGDH ratio in the chick brain during development. Experientia. 38(9): 1042-1043, doi: 10.1007\/BF01955355<\/a><\/p>\r\n\r\n

Fiske CH and Subbarow Y, 1925. The colorimetric determination of phosphorus. J Biol Chem, 66(2): 375-400, doi: 10.1016\/S0021-9258(18)84756-1<\/a><\/p>\r\n\r\n

Foye OT, Ferket PR and Uni Z, 2007. Ontogeny of energy and carbohydrate utilisation of the precocial avian embryo and hatchling. Avian Poult Biol Rev,18(3): 93-101, doi: 10.3184\/147020607X296033<\/a><\/p>\r\n\r\n

King J, 1965. In: Practical Clinical Enzymology. D. Van Nostrand Company Ltd., London, pp 70-75<\/p>\r\n\r\n

Kumar A, Das K, Bharti A, Kumar R and Singh AK, 2013. Embryonic mortality pattern in Black Rock, Gramapriya and Vanaraja breeds of chicken. Progress Res, 8(1): 98-100<\/p>\r\n\r\n

Lowry OH, Rosebrough NJ, Farr AL and Randall RJ, 1951. Protein measurement with the folin phenol reagent. J Biol Chem, 193(1): 265-275, doi: 10.1016\/S0021-9258(19)52451-6<\/a><\/p>\r\n\r\n

Luzzatto L, Mehta A and Vulliamy T, 2001. Glucose 6-Phosphate Dehydrogenase Deficiency, Chapter 179. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The Metabolic and Molecular Bases of Inherited Disease (8th edn.), pp 4517-1553, New York: McGraw-Hill<\/p>\r\n\r\n

Mahapatra M and Murthy TL, 1990. Enzyme profile in Quail embryo. Thesis submitted to Orissa University of Agriculture and Technology; Bhubaneswar. Available In: http:\/\/krishikosh.egranth.ac.in\/handle\/1\/5810080608<\/a><\/p>\r\n\r\n

Moran ET Jr, 2007. Nutrition of the developing embryo and hatchling. Poult Sci, 86(5): 1043-1049, doi: 10.1093\/ps\/86.5.1043<\/a><\/p>\r\n\r\n

Muramatsu T, Hiramoto K, Koshi N, Okumura J, Miyoshi S et al.<\/em>, 1990. Importance of albumen content in whole-body protein synthesis of the chicken embryo during incubation. Br Poult Sci, 31(1): 101-106, doi: 10.1080\/00071669008417235<\/a><\/p>\r\n\r\n

Nandi S, Sharma K, Pawan K and Nandi D, 2007. Poultry farming: A rapidly growing profitable business. Poult Line, 7(12): 19-20<\/p>\r\n\r\n

Ohta Y, Yoshida T and Tsushima N, 2004. Comparison between broilers and layers for growth and protein use by embryos. Poult Sci, 83(5): 783-787, doi: 10.1093\/ps\/83.5.783<\/a><\/p>\r\n\r\n

Panda AK, Raju MVLN and Rama Rao SV, 2008. Poultry production in India: opportunities and challenges ahead. Poult Line, 8(1): 11-14<\/p>\r\n\r\n

Sato M, Tachibana T and Furuse M, 2006. Heat production and lipid metabolism in broiler and layer chickens during embryonic development. Comp Biochem Physiol Part A Mol Integr Physiol, 143(3): 382-388, doi: 10.1016\/j.cbpa.2005.12.019<\/a><\/p>\r\n\r\n

Schaffenburg WC, Benjamin NL, Cynthia MC and DeKlotz, 2021. Polymorphisms: Why Individual Drug Responses Vary. In: Comprehensive Dermatologic Drug Therapy, 4th edn., pp 21-33, doi: 10.1016\/B978-0-323-61211-1.00003-6<\/a><\/p>\r\n\r\n

Scott TR, Johnson WA, Satterlee DG and Gildersleeve RP, 1981. Circulating levels of corticosterone in the serum of developing chick embryos and newly hatched chicks. Poult Sci, 60(6): 1314-1320, doi: 10.3382\/ps.0601314<\/a><\/p>\r\n\r\n

Sheikh IU, Kalita N, Mahanta JD and Hussain J, 2018. Studies on certain egg qualities of Indigenous, Vanaraja and crossbred (PB2 x Indigenous) chickens under intensive and backyard systems of rearing. Int J Curr Microbiol App Sci, 7(4): 1690-1695, doi: 10.20546\/ijcmas.2018.704.191<\/a><\/p>\r\n\r\n

Shibata M, Iwasawa A and Yayota M, 2023. Gluconeogenesis in the yolk sac membrane: enzyme activity, gene expression, and metabolites during layer chicken development. <\/em>J Poult Sci, 60(2): 2023020, doi: 10.2141%2Fjpsa.2023020<\/a><\/p>\r\n\r\n

Surai PF, 2002. Natural Antioxidants in Avian Nutrition and Reproduction (Vol. I). Nottingham University Press, Nottingham, UK<\/p>\r\n\r\n

Tajane SB and Vasulkar R, 2014.  Development of rural backyard poultry. Poult Punch, 30(3): 30-35<\/p>\r\n\r\n

Tazawa H, Visschedijk AHJ, Wittmann J and Piiper J, 1983. Gas exchange, blood gases and acid-base status in the chick before, during and after hatching. Respir Physiol, 53(2): 173-185, doi: 10.1016\/0034-5687(83)90065-8<\/a><\/p>\r\n\r\n

Wallace JC and Newsholme EA, 1967. A comparison of the properties of fructose 1,6-diphosphatase, and the activities of other key enzymes of carbohydrate metabolism, in the livers of embryonic and adult rat, sheep and domestic fowl. Biochem J, 104(2): 378-384, doi: 10.1042\/bj1040378<\/a><\/p>\r\n\r\n

Wang KM, 1968. Comparative study of the development of enzymes involved in carbohydrate and amino acid metabolism from brain, heart, liver and kidney of chick embryo. Comp Biochem Physiol, 27(1): 33-50, doi: 10.1016\/0010-406X(68)90751-2<\/a><\/p>\r\n\r\n

Watford M, Hod Y, Chiao Y, Utter MF and Hanson RW, 1981. The unique role of the kidney in gluconeogenesis in the chicken. J Biol Chem, 256(19): 10023-10027, doi: 10.1016\/S0021-9258(19)68734-X<\/a><\/p>\r\n\r\n

Wilson XJ, Edmund MKL and Rolando FDM, 1992. Developmental profiles of antioxidant enzymes and trace metals in chick embryo. Mech Ageing Dev, 65(1): 51-64, doi: 10.1016\/0047-6374(92)90125-w<\/a><\/p>\r\n\r\n

Worthington K and Worthington V, 2023. Glucose-6-phosphate dehydrogenase in Worthington Enzyme Manual, pp 353-359<\/p>\r\n","corresponding_author_email":"meechaitanya@yahoo.co.in","received_date":"2024-07-27","accepted_date":"2025-01-31","published_date":"2025-03-26","citation":"Ashok Kumar G, Padmaja K, Eswara Prasad P, Adilaxmamma K and Chaitanya Kumar TV, 2025. A comparative study of key enzymes in carbohydrate metabolism during embryonic development in Vanaraja and broilers chicks, Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.08624","pageNumber":"","number_view":"3","snippet":"086-24-SC.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.08624-361","author":"","is_show":"Y","feature_view":"Y"},{"id":"362","issue_id":"0","doi_number":"10.36062\/ijah.2025.00924","title":"Comparison and evaluation of functional properties of potential probiotic cultures by in-vitro tests","description":"

Abstract<\/strong><\/p>\r\n\r\n


\r\n        Probiotic culture Lactobacillus helveticus <\/em>MTCC 5463 (V3) and Lacticaseibacillus rhamnosus <\/em>MTCC 5462 (I4) were used for this study for comparison and evaluation of functional properties. Cultures were inoculated @ 2% for conducting each study. V3 culture reduced pH from 6.36±0.02 to 4.8±0.09 in 24th h of observation. I4 reduced pH from 6.3±0.05 to 5.01±0.06 in 24th h. I4 was more tolerant to bile salt than V3. It showed mean Abs620 - 0.435 compared to V3 Abs620- 0.395 at 0.3% bile concentration. In case of phenol tolerance, V3 was tolerant to phenol concentration of 0.4%, whereas I4 showed tolerance up to 0.4% phenol. I4 showed more tolerance to pancreatin than V3. Both were tolerant to 0.3% pancreatin, but I4 showed higher Abs600 (0.433) than V3 (0.301). The cell surface hydrophobicity values for V3 ranged from 47.31 to 78.06% and for I4 it remained 33.29 to 67.88% to n- hexadecane, n- hexane, xylene and chloroform. In case of auto-aggregation values increased over incubation period and ranged from 21.08 - 51.22% and 25.47- 43.14% for V3 and I4 respectively. V3 showed good auto aggregation property than I4. V3 (10.92 log cfu\/mL) showed a significantly higher viability than I4 (10.59 log cfu\/mL). There was a significant increase in cell viability for both of the cultures up to 24 hrs. According to statistical analysis V3 culture showed comparatively better results for conducted in-vitro <\/em>tests than I4<\/strong><\/p>\r\n","keywords":"Auto-aggregation, Bile tolerance, Cell surface hydrophobicity, Phenol tolerance, Probiotics","article_type":"2","status":"Y","price_status":"F","reference":"

Abdel Tawab FI, Abd Elkadr MH, Sultan AM et al<\/em>., 2023. Probiotic potentials of lactic acid bacteria isolated from Egyptian fermented food. Sci Rep, 13: 16601, doi: 10.1038\/s41598-023-43752-0<\/a><\/p>\r\n\r\n

Bajaj BK, Razdan K, Claes IJ and Lebeer S, 2021. Probiotic attributes of the newly isolated lactic acid bacteria from infants’gut. J Microbiol Biotechnol Food Sci, 5(2): 109-115, doi: 10.15414\/jmbfs.2015.5.2.109-115<\/a><\/p>\r\n\r\n

Bodyfelt FW, Tobias J and Trout GM, 1988. The Sensory Evaluation of Dairy Products. An Avi Book Published by Van Nostrand Reinhold, New York, USA, pp 598<\/p>\r\n\r\n

Chew SY, Cheah YK, Seow HF, Sandai D and Than LTL, 2015. Probiotic Lactobacillus rhamnosus<\/em> GR?1 and Lactobacillus reuteri<\/em> RC?14 exhibit strong antifungal effects against vulvovaginal candidiasis?causing Candida glabrata<\/em> isolates. J Appl Microbio, 118(5): 1180-1190, doi: 10.1111\/jam.12772<\/a><\/p>\r\n\r\n

Collado MC, Gueimonde M, Hernández M, Sanz Y and Salminen S, 2005. Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot, 68(12): 2672-2678, doi: 10.4315\/0362-028X-68.12.2672<\/a><\/p>\r\n\r\n

Crittenden R and Playne MJ, 2008. Nutrition News. Facts and functions of prebiotics, probiotics and synbiotics. In: Handbook of Probiotics and Prebiotics. Lee YK, Salminen S (edn), John Wiley & Sons, Inc, pp535-582 <\/p>\r\n\r\n

Doron S and Gorbach SL, 2006. Probiotics: their role in the treatment and prevention of disease. Expert Rev Anti Infect Ther, 4(2): 261-275, doi: 10.1586\/14787210.4.2.261<\/a><\/p>\r\n\r\n

Elfahri KR, Vasiljevic T, Yeager T and Donkor ON, 2016. Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus<\/em> strains. J Dairy Sci, 99(1): 31-40, doi: 10.3168\/jds.2015-10160<\/a><\/p>\r\n\r\n

Gardiner GE, Heinemann C, Baroja ML, Bruce AW, Beuerman D et al<\/em>., 2002. Oral administration of the probiotic combination Lactobacillus rhamnosus<\/em> GR-1 and L<\/em>. fermentum<\/em> RC-14 for human intestinal applications. Int Dairy J, 12: 191-196, doi: 10.1016\/S0958-6946(01)00138-8<\/a><\/p>\r\n\r\n

Goldin BR, 1998. Health benefits of probiotics.  Br J Nutr, 80(4): S203-S207, doi: 10.1017\/S0007114500006036<\/a><\/p>\r\n\r\n

Hassan MU, Nayab H, Shafique F, Williamson MP, Almansouri TS et al<\/em>., 2020. Probiotic properties of Lactobacillus helveticus<\/em> and Lactobacillus plantarum<\/em> isolated from traditional Pakistani yoghurt. Biomed Res Int,Dec 24;2020:8889198, doi: 10.1155\/2020\/8889198<\/a><\/p>\r\n\r\n

Hati S, Patel N and Mandal S, 2018. Comparative growth behaviour and bio-functionality of lactic acid bacteria during fermentation of soy milk and bovine milk. Probiotics Antimicrob Proteins, 10(2): 277-283, doi: 10.1007\/s12602-017-9279-5<\/a><\/p>\r\n\r\n

Helmy SA, 2012. Histopathological effect of probiotics after intra-peritoneal injection of ethrlith ascites tumor cells. Open Access Sci Rep,1: 531-536, doi: 10.4172\/scientificreports.531<\/a><\/p>\r\n\r\n

IS 1479-3, 1977. Methods of Test for Dairy Industry, Part III: Bacteriological Analysis of Milk, Bureau of Indian Standards Institution, New Delhi<\/p>\r\n\r\n

Jawan R, Kasimin ME, Jalal SN, Faik AM, Abbasiliasi S et al<\/em>., 2019. Isolation, characterisation and in vitro<\/em> evaluation of bacteriocins-producing lactic acid bacteria from fermented products of Northern Borneo for their beneficial roles in food industry. J Phys Conf Ser, 1358: 012020, doi: 10.1088\/1742-6596\/1358\/1\/012020<\/a><\/p>\r\n\r\n

Kathiriya MR, 2014. Study on functional and probiotic potential of lactic acid bacteria. Master’s thesis submitted to Anand Agricultural University, India<\/p>\r\n\r\n

Khagwal N, Sharma PK and Sharma DC, 2014. Screening and evaluation of Lactobacillus spp<\/em>. for the development of potential probiotics. Afr J Microbiol Res, 8 (15): 1573-1579, doi: 10.5897\/AJMR2013.6138<\/a><\/p>\r\n\r\n

Khedkar CD, 1988. Characterization of human strains of Lactobacillus acidophilus<\/em> isolates for their suitability in preparation of milk beverage and their antibacterial cum therapeutic ability. Master’s thesis, Gujarat Agricultural University, India<\/p>\r\n\r\n

Kodaikkal V, 2008. Adhesion characteristics of probiotic lactobacilli in gastrointestinal tract. Master’s thesis submitted to Anand Agricultural University, India<\/p>\r\n\r\n

Koll P, Mändar R, Smidt I, Hütt P, Truusalu K et al<\/em>., 2010. Screening and evaluation of human intestinal lactobacilli for the development of novel gastrointestinal probiotics. Curr Microbiol, 61(6): 560-566, doi: 10.1007\/s00284-010-9653-y<\/a><\/p>\r\n\r\n

Kos BVZE, Šuškovi? J, Vukovi? S, Šimpraga M, Frece J et al<\/em>., 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus<\/em> M92. J Appl Microbiol, 94 (6): 981-987, doi: 10.1046\/j.1365-2672.2003.01915.x<\/a><\/p>\r\n\r\n

Luca L and Oroian M, 2021. Influence of different prebiotics on viability of Lactobacillus casei<\/em>, Lactobacillus plantarum<\/em> and Lactobacillus rhamnosus<\/em> encapsulated in alginate microcapsules. Foods, 10(4): 710, doi: 10.3390\/foods10040710<\/a><\/p>\r\n\r\n

Mantzourani I, Kazakos S, Terpou A, Alexopoulos A, Bezirtzoglou E et al<\/em>., 2018. Potential of the probiotic Lactobacillus plantarum<\/em> ATCC 14917 strain to produce functional fermented pomegranate juice. Foods, 8(1): 4, doi: 10.3390\/foods8010004<\/a> <\/p>\r\n\r\n

Menconi A, Kallapura G, Latorre JD, Morgan MJ, Pumford NR et al<\/em>., 2014. Identification and characterization of lactic acid bacteria in a commercial probiotic culture. Biosci Micro Food Health, 33(1): 25-30, doi: 10.12938\/bmfh.33.25<\/a><\/p>\r\n\r\n

Patidar SK,1995. Effect of Lactobacillus acidophilus <\/em>feeding on immune response in chicks. Master’s thesis submitted to Gujarat Agricultural University, India<\/p>\r\n\r\n

Raghuveer C and Tandon RV, 2009. Consumption of functional food and our health concerns. Pak J Physiol, 5(1): 76-83<\/p>\r\n\r\n

Rokana N, Singh BP, Thakur N, Sharma C, Gulhane RD et al<\/em>., 2018. Screening of cell surface properties of potential probiotic lactobacilli isolated from human milk. J Dairy Res, 85(3): 347-354, doi: 10.1017\/s0022029918000432<\/a> <\/p>\r\n\r\n

Stanton C, Gardiner G, Meehan H, Collins K, Fitzgerald G et al<\/em>., 2001. Market potential for probiotics. Am J Clin Nut, 73(2 Suppl): 476S-483S, doi: 10.1093\/ajcn\/73.2.476s<\/a>  <\/p>\r\n\r\n

Steel RGD and Torrie JH, 1980. Principles and Procedures of Statistics. A Biometrical Approach, 2nd edn, McGraw-Hill Book Company, New York, pp20-90<\/p>\r\n","corresponding_author_email":"kunalgawai@kamdhenuuni.edu.in","received_date":"2024-02-02","accepted_date":"2025-03-01","published_date":"2025-04-08","citation":"Das K, Gawai K, Hati S, Hingu M and Shendurshe A, 2025. Comparison and evaluation of functional properties of potential probiotic cultures by in-vitro tests, Indian J Anim Health, doi: https:\/\/doi.org\/10.36062\/ijah.2025.00924","pageNumber":"","number_view":"2","snippet":"009-24-Res.pdf","upcoming_content_0":"","upcoming_content_1":"","upcoming_content_2":"","upcoming_content_3":"","upcoming_content_4":"","upcoming_content_5":"","upcoming_content_6":"","upcoming_content_7":"","upcoming_content_8":"","upcoming_content_9":"","upcoming_content_10":"","upcoming_content_11":"","upcoming_content_12":"","upcoming_content_13":"","upcoming_content_14":"","alias":"10.36062-ijah.2025.00924-362","author":"","is_show":"Y","feature_view":"Y"},{"id":"363","issue_id":"0","doi_number":"10.36062\/ijah.2025.00325","title":"Maiden isolation and molecular confirmation of lumpy skin disease virus from cattle in West Bengal","description":"

Abstract<\/strong><\/p>\r\n\r\n

      To investigate the presence of lumpy skin disease virus (LSDV) in some suspected cattle of West Bengal (WB), the nodules and scabs were collected and virological\/ molecular confirmation was performed. The skin biopsies (n=6) were collected from the representative animals (n=3) in virus transport medium and stored at 4oC. Latter, LSDV-specific polymerase chain reaction (PCR), recommended by World Organization for Animal Health (WOAH, previously OIE), was performed. Chorioallantoic membrane (CAM) of sample inoculated embryonated chicken egg (ECE) showing pock lesions was triturated and inoculated into vero cell lines. Clear cytopathic effect (CPE) of virus was observed at 72 hours post inoculation. Capripox virus specific PCR confirmed the presence of LSD virus in the cell supernatant. We report LSDV isolation from field outbreaks using ECE and vero cell lines first time in WB. LSD cases of WB need urgent attention to formulate control strategies as the state shares international borders.<\/strong><\/p>\r\n","keywords":"DNA virus, Emerging disease, Lumpy skin disease virus, Skin nodules, Vector-borne disease","article_type":"2","status":"Y","price_status":"F","reference":"