Authors:
Citation: Nair PM, Sivaprasad MS, Rahman ATF, Chaudhary P, Arulkumar S, Mani V and Mondal G, 2024. Major metabolic diseases in dairy animals, nutritional aspects and treatment – A review. Indian J Anim Health, 63(2): 194-206, doi: https://doi.org/10.36062/ijah.2024.13923
Abstract
Modern dairy breeds are capable of producing enormous quantities of milk. Animals are subjected to stressful situations that can harm their health, effort to consume, digest and metabolize enough nutrients to meet lactation requirements. Metabolic illnesses like hypocalcemia, ruminal acidosis and ketosis are common problems and will completely affect the health and production of dairy animals. The majority of the health issues that result from such disorders are caused by the inability to metabolize enough nutrients. Proper nutrition can help minimize the prevalence of these illnesses. Furthermore, some specific measures provide extra benefits in the prevention of nutrition-related metabolic disorders. Basic physiological processes that must be preserved during the periparturient period to prevent metabolic disease include maintaining a strong immune system, adapting rumen and its microbes to lactation diets and maintaining calcium metabolism. Knowledge of these metabolic diseases and how to treat them must be known and updated for the successful management of dairy animals. This review aims to understand the significant nutritional metabolic changes that affect production and its appropriate mitigation strategies.
Reference
Abdela N, 2016. Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective. Achiev Life Sci, 10(2): 187-196, doi: 10.1016/j.als.2016.11.006
Adams AE, Lombard JE, Fossler CP, Román-Muñiz IN and Kopral C, 2017. Associations between housing and management practices and the prevalence of lameness, hock lesions and thin cows on US dairy operations. J Dairy Sci, 100(3): 2119-2136, doi: 10.3168/jds.2016-11517
Aiello SE, Moses MA and Allen DG, 2016. The Merck Veterinary Manual. Merck and Company, Incorporated, pp 3325
Ametaj BN, 2010. In: Metabolic Disorders of Dairy Cattle. Hudson R., Nielsen O., Bellamy J., Stephen C., editors. UNESCO- EOLSS Publishers, Paris. Veterinary science, pp 56-73
Antanaitis R, Džermeikait? K, Krištolaityt? J, Stankevi?ius R, Daunoras G et al., 2024. Changes in parameters registered by innovative technologies in cows with subclinical acidosis. Animals, 14: 1883, doi: 10.3390/ani14131883
Bacic G, Karadjole T, Macesic N and Karadjole M, 2007. A brief review of etiology and nutritional prevention of metabolic disorders in dairy cattle. Vet Arhiv, 77(6): 567-577
Bakshi MPS, Wadhwa M and Makkar HP, 2017. Feeding of high-yielding bovines during transition phase. CABI Rev, 12: 1-8, doi: 10.1079/PAVSNNR201712006
Behluli B, Musliu A, Sherifi K, Youngs CR and Rexhepi A, 2017. Risk factors for occurrence of displaced abomasum and their relation to nutritional management of Holstein dairy cattle. Vet Arhiv, 87(4): 419-430, doi: 10.24099/vet.arhiv.160216
Bertoni G, Trevisi ERM, Han X and Bionaz M, 2008. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J Dairy Sci, 91(9): 3300-3310, doi: 10.3168/jds.2008-0995
Besheer GE, Ahmed E, Samy M, Asmaa G, Rokaia FR et al., 2023. Association between biochemical parameters and ultrasonographic measurement for the assessment of hepatic lipidosis in dairy cows. Italian J Anim Sci, 22(1): 136-147, doi: 10.1080/1828051X.2023.2170284
Bobe G, Young JW and Beitz DC, 2004. Invited review: Pathology, etiology, prevention and treatment of fatty liver in dairy cows. J Dairy Sci, 87(10): 3105-3124, doi: 0.3168/jds.s0022-0302(04)73446-3
Boosman R, Nemeth F and Gruys E, 1991. Bovine laminitis: clinical aspects, pathology and pathogenesis with reference to acute equine laminitis. Vet Quart, 13(3): 163-171, doi: 10.1080/01652176.1991.9694302
Bramley E, Lean IJ, Fulkerson WJ, Stevenson MA, Rabiee AR et al., 2008. The definition of acidosis in dairy herds predominantly fed on pasture and concentrates. J Dairy Sci, 91(1): 308-32, doi: 10.3168/jds.2006-601
Caixeta LS and Omontese BO, 2021. Monitoring and improving the metabolic health of dairy cows during the transition period. Animals, 11(2): 352, doi: 10.3390/ani11020352
Caixeta LS, Herman JA, Johnson GW and McArt JA, 2018. Herd-level monitoring and prevention of displaced abomasum in dairy cattle. Vet Clin Food Anim Pract, 34(1): 83-99, doi: 10.1016/j.cvfa.2017.10.002
Caixeta LS, Ospina PA, Capel MB and Nydam DV, 2017. Association between subclinical hypocalcemia in the first 3 days of lactation and reproductive performance of dairy cows. Theriogenology, 94: 1-7, doi: 10.1016/j.theriogenology.2017.01.039
Cardoso FC, Kalscheur KF and Drackley JK, 2020. Symposium review: Nutrition strategies for improved health, production and fertility during the transition period. J Dairy Sci, 103(6): 5684-5693, doi: 10.3168/jds.2019-17271
Christakos S, 2012. Mechanism of action of 1, 25-dihydroxyvitamin D3 on intestinal calcium absorption. Rev Endocr Metab Disord, 13(1): 39-44
Cook NB, Nordlund KV and Oetzel GR, 2004. Environmental influences on claw horn lesions associated with laminitis and subacute ruminal acidosis in dairy cows. J Dairy Sci, 87: E36-E46, doi: 10.3168/jds.S0022-0302(04)70059-4
Credille BC and Fubini S, 2022. Left Displacement of the Abomasum. In Comparative Veterinary Anatomy. Academic Press, pp 1063-1068
Crnkic C and Hodzic A, 2012. Nutrition and health of dairy animals. In Milk Production- An Up-To-Date Overview of Animal Nutrition, Management and Health. Intech Open, doi: 10.5772/50804
DeGaris PJ and Lean IJ, 2008. Milk fever in dairy cows: A review of pathophysiology and control principles. Vet J, 176(1): 58-69, doi: 10.1016/j.tvjl.2007.12.029
Ding J, Li S, Jiang L, Li Y, Zhang X et al., 2020. Laminar inflammation responses in the oligofructose overload induced model of bovine laminitis. Front Vet Sci, 7: 351, doi: 10.3389/fvets.2020.00351
Doll KM, Sickinger T and Seeger, 2009. New aspects in the pathogenesis of abomasal displacement. Vet J, 181: 90-96, doi: 10.1016/j.tvjl.2008.01.013
Duffield T, 2000. Subclinical ketosis in lactating dairy cattle. Vet Clin North Am Food Pract, 16(2): 231-253, doi: 10.1016/s0749-0720(15)30103-1
Elmhadi ME, Ali DK, Khogali MK and Wang H, 2022. Subacute ruminal acidosis in dairy herds: microbiological and nutritional causes, consequences and prevention strategies. Anim Nutr, 10: 148-155, doi: 10.1016/j.aninu.2021.12.008
Geishauser T, Leslie K and Duffield T, 1999. Prevention and prediction of displaced abomasum in dairy cows. In: American Association of Bovine Practitioners. Proceedings of the Annual Conference, pp 203-207, doi: 10.21423/bovine-vol34no1p51-55
Goff J, 2006. Major advances in our understanding of nutritional influences on bovine health. J Dairy Sci, 89(4): 1292-1301, doi: 10.3168/jds.S0022-0302(06)72197-X
Goff JP and Horst RL, 1997. Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci, 80(7): 1260-1268, doi: 10.3168/jds.s0022-0302(97)76055-7
Goff JP, 2014. Calcium and magnesium disorders. Vet Clin North Am Food Pract, 30(2): 359-381, doi: 10.1016/j.cvfa.2014.04.003
Goff JP, Hohman A and Timms LL, 2020. Effect of subclinical and clinical hypocalcemia and dietary cation-anion difference on rumination activity in periparturient dairy cows. J Dairy Sci, 103(3): 2591-2601, doi: 10.3168/jds.2019-17581
Grossi S, Rossi L, Dell’Anno M, Biffani S and Sgoifo Rossi CA, 2021. Effects of heated drinking water on the growth performance and rumen functionality of fattening Charolaise beef cattle in winter. Animals, 11(8): 2218, doi: 10.3390%2Fani11082218
Guli?ski P, 2021. Ketone bodies- causes and effects of their increased presence in cows’ body fluids: A review. Vet World, 14(6), 1492, doi: 10.14202%2Fvetworld.2021.1492-1503
Haass CL and Eness PG, 1984. Bovine fatty liver syndrome. Iowa State Uni Vet, 46(2): 7
Hernandez-Castellano LE, Hernandez LL and Bruckmaier RM, 2020. Review: Endocrine pathways to regulate calcium homeostasis around parturition and the prevention of hypocalcemia in periparturient dairy cows. Animals, 14: 330-338, doi: 10.1017/s1751731119001605
Ingvartsen KL, 2006. Feeding-and management-related diseases in the transition cow: physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim Feed Sci Technol, 126(3-4): 175-213, doi: 10.1007/s11154-011-9197-x
Jaramillo-López E, Itza-Ortiz MF, Peraza-Mercado G and Carrera-Chávez JM, 2017. Ruminal acidosis: strategies for its control. Austral J Vet Sci, 49(3): 139-148, doi: 10.4067/S0719-81322017000300139
Kim S and Cho YI, 2019. Analysis of total mixed ration (TMR) nutrition and metabolic diseases in Korean dairy farm. Korean J Vet Serv, 42(2): 67-71, doi: 0.7853/kjvs.2019.42.2.67
Lacasse P, Vanacker N, Ollier S and Ster C, 2018. Innovative dairy cow management to improve resistance to metabolic and infectious diseases during the transition period. Res Vet Sci, 116: 40-46, doi: 10.1016/j.rvsc.2017.06.020
Langova L, Novotna I, Nemcova P, Machacek M, Havlicek Z et al., 2020. Impact of nutrients on the hoof health in cattle. Animals, 10: 1824, doi: 10.3390/ani10101824
Lee M, Jeong S, Seo J and Seo S, 2019. Changes in the ruminal fermentation and bacterial community structure by a sudden change to a high-concentrate diet in Korean domestic ruminants. Asian-Australas J Anim Sci, 32(1): 92, doi: 10.5713%2Fajas.18.0262
Li H, Liu J, Zhu W and Mao S, 2017. Intraruminal infusion of oligofructose alters ruminal microbiota and induces acute laminitis in sheep. J Anim Sci, 95(12): 5407-5419, doi: 10.2527/jas2017.1860
Ma Y, Wang C, Elmhadi M, Zhang H, Han Y et al., 2021. Thiamine ameliorates metabolic disorders induced by a long-term high-concentrate diet and promotes rumen epithelial development in goats. J Dairy Sci, 104(11): 11522-11536, doi: 10.3168/jds.2021-20425
Mallette LE, 1989. Regulation of blood calcium in humans. Endocrinol Metab Clin N Am, 18(3): 601-610, doi: 10.1016/S0889-8529(18)30355-4
Mandebvu P, Ballard CS, Sniffen CJ, Tsang DS, Valdez F et al., 2003. Effect of feeding an energy supplement prepartum and postpartum on milk yield and composition and incidence of ketosis in dairy cows. Anim Feed Sci Technol, 105(1-4): 81-93, doi: 10.1016/S0377-8401(03)00058-0
Mann S, Yepes FAL, Behling-Kelly E and McArt JAA, 2017. The effect of different treatments for early-lactation hyperketonemia on blood β-hydroxybutyrate, plasma on esterified fatty acids, glucose, insulin and glucagon in dairy cattle. J Dairy Sci, 100: 6470-6482, doi: 10.3168/jds.2016-12532
Martens H and Schweigel M, 2000. Pathophysiology of grass tetany and other hypomagnesemias: implications for clinical management. Vet Clin N Am, 16(2): 339-368, doi: 10.1016/s0749-0720(15)30109-2
Martinez N, Risco CA, Lima FS, Bisinotto RS and Greco LF, 2012. Evaluation of peripartal calcium status, energetic profile and neutrophil function in dairy cows at low or high risk of developing uterine disease. J Dairy Sci, 95(12): 7158-7172, doi: 10.3168/jds.2012-5812
Martín-Tereso J and Martens H, 2014. Calcium and magnesium physiology and nutrition in relation to the prevention of milk fever and tetany (dietary management of macrominerals in preventing disease). Vet Clin N Am, 30(3): 643-670, doi: 10.1016/j.cvfa.2014.07.007
Mitchell KE and Rossow HA, 2020. Effects of a glucose precursor supplement fed to Holstein and Jersey cows during the transition period on ketosis prevalence and milk production. EC Vet Sci, 5: 1-13
Monteiro HF and Faciola AP, 2020. Ruminal acidosis, bacterial changes and lipopolysaccharides. J Ani Sci, 98(8): 248, doi: 10.1093/jas/skaa248
Neubauer V, Humer E, Kröger I, Braid T and Wagner M, 2018. Differences between pH of indwelling sensors and the pH of fluid and solid phase in the rumen of dairy cows fed varying concentrate levels. J Anim Physiol Anim Nutr, 102(1): 343-349, doi: 10.1111/jpn.12675
Oh J, Harper MT, Melgar A, Räisänen S, Chen X et al., 2021. Dietary supplementation with rumen-protected capsicum during the transition period improves the metabolic status of dairy cows. J Dairy Sci, 104(11): 11609-11620, doi: 10.3168/jds.2020-19892
Overton TR and Waldron MR, 2004. Nutritional management of transition dairy cows: strategies to optimize metabolic health. J Dairy Sci, 87: E105-E119, doi: 10.3168/jds.S0022-0302(04)70066-1
Pascottini OB and LeBlanc SJ, 2020. Modulation of immune function in the bovine uterus peripartum. Theriogenology, 150: 193-200, doi: 10.1016/j.theriogenology.2020.01.042
Pelczy?ska M, Moszak M and Bogda?ski P, 2022. The role of magnesium in the pathogenesis of metabolic disorders. Nutrients, 14(9): 1714, doi: 10.3390/nu14091714
Pickett MM, Piepenbrink MS and Overton TR, 2003. Effects of propylene glycol or fat drench on plasma metabolites, liver composition and production of dairy cows during the periparturient period. J Dairy Sci, 86(6): 2113-2121, doi: 10.3168/jds.s0022-0302(03)73801-6
Pirestani A and Aghakhani M, 2018. The effects of rumen-protected choline and l-carnitine supplementation in the transition period on reproduction, production and some metabolic diseases of dairy cattle. J App Ani Res, 46(1): 435-440, doi: 10.1080/09712119.2017.1332632
Pizoni C, Barbosa AA, Cardoso KB, Velasquez B, Freitas KC et al., 2022. Effects of short term acidogenic diet feeding on metabolic parameters of dairy cows with induced subclinical hypocalcemia. Res Soc Dev, 11(4): e48211427081-e48211427081, doi: 10.33448/rsd-v11i4.27081
Pryce JE, Gaddis KP, Koeck A, Bastin C, Abdelsayed M et al., 2016. Invited review: Opportunities for genetic improvement of metabolic diseases. J Dairy Sci, 99(9): 6855-6873, doi: 10.3168/jds.2016-10854
Radostits OM, Blood DC, Gay CC, Hinchiff KW and Handerson JA, 2000. Veterinary Medicine, 9th edn. Bailliere and Tindall Publication, Ltd. London, pp 1450-1452
Rivas RMO, Gutierrez-Oviedo FA, Komori GH, Beihling VV, Marins TN et al., 2021. Effect of supplementation of a mixture of gluconeogenic precursors during the transition period on performance, blood metabolites and insulin concentrations and hepatic gene expression of dairy cows. Anim Feed Sci Technol, 272: 114791, doi: 10.1016/j.anifeedsci.2020.114791
Roberts T, Chapinal N, LeBlanc SJ, Kelton DF, Dubuc J et al., 2012. Metabolic parameters in transition cows as indicators for early-lactation culling risk. J Dairy Sci, 95(6): 3057-3063, doi: 10.3168/jds.2011-4937
Roche JR, Bell AW, Overton TR and Loor JJ, 2013. Nutritional management of the transition cow in the 21st century– A paradigm shift in thinking. Anim Prod Sci, 53(9): 1000-1023, doi: 10.1071/AN12293
Ross AB, Godin JP, Minehira K and Kirwan JP, 2013. Increasing whole grain intake as part of prevention and treatment of nonalcoholic fatty liver disease. Int J Endocrinol, doi: 10.1155/2013/585876
Safari M, Ghasemi E, Alikhani M and Ansari-Mahyari S, 2018. Supplementation effects of pomegranate by-products on oxidative status, metabolic profile and performance in transition dairy cows. J Dairy Sci, 101(12): 11297-11309, doi: 10.3168/jds.2018-14506
Safdar AHA, 2015. Fundamental research in relation to minimizing adverse effects on metabolic disorders. Bio Forum, 7(1): 1156-1163
Santos MM, Bregadioli GC, Santos LG, Curti JM, Duarte CA et al., 2020. Treatment of acute rumen lactic acidosis with intravenous hypertonic sodium chloride or bicarbonate solutions followed by intraruminal water. Res Vet Sci, 128: 24-34, doi: 10.1016/j.rvsc.2019.10.009
Shaver RD, 1997. Nutritional risk factors in the etiology of left displaced abomasum in dairy cows: A review. J Dairy Sci, 80(10): 2449-2453, doi: 10.3168/jds.s0022-0302(97)76197-6
Silva DCD, Fernandes BD, Lima JMDS, Silva BAD, Rodrigues GP et al., 2020. Subclinical hypomagnesemia: prevalence and causes in dairy cows in the semiarid region of the state of Paraíba, Brazil. Rev Bras Saúde Prod Anim, 21: 2020, doi: 10.1590/S1519-99402121132020
Socha MT, Tomlinson DJ, Johnson AB and Shugal LM, 2002. Proceedings of the 12th International Symposium on Lameness in Ruminants, Orlando, pp 62-69
Stone WC, 2004. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J Dairy Sci, 87: E13-E26, doi: 10.3168/jds.S0022-0302(04)70057-0
Sun X, Wang Y, Wang E, Zhang S, Wang Q et al., 2021. Effects of saccharomyces cerevisiae culture on ruminal fermentation, blood metabolism and performance of high-yield dairy cows. Animals, 11(8): 2401, doi: 10.3390%2Fani11082401
Sundrum A, 2015. Metabolic disorders in the transition period indicate that the dairy cows’ ability to adapt is overstressed. Animals, 5(4): 978-1020, doi: 10.3390/ani5040395
Thilsing-Hansen T, Jørgensen RJ and Østergaard S, 2002. Milk fever control principles: A review. Acta Vet Scand, 43(1): 1-19, doi: 10.1186/1751-0147-43-1
Wen K, Zhao MM, Liu L, Khogali MK, Geng TY et al., 2021. Thiamine modulates intestinal morphological structure and microbiota under subacute ruminal acidosis induced by a high-concentrate diet in Saanen goats. Animals, 15(10): 100370, doi: 10.1016/j.animal.2021.100370
Wisnieski L, Norby B, Pierce SJ, Becker T, Gandy JC et al., 2019. Predictive models for early lactation diseases in transition dairy cattle at dry-off. Prevent Vet Med, 163: 68-78, doi: 10.1016/j.prevetmed.2018.12.014
Wu G, 2018. Principles of animal nutrition. Boca Raton: CRC Press, doi: 10.1201/9781315120065
Wu G, 2020. Management of metabolic disorders (including metabolic diseases) in ruminant and nonruminant animals. In Animal Agriculture Bazer, Academic Press, Cambridge, MA, USA, pp 471-491, doi: 10.1016/B978-0-12-817052-6.00027-6
Xia G, Sun J, Fan Y, Zhao F, Ahmed G et al., 2020. Β-sitosterol attenuates high grain diet-induced inflammatory stress and modifies rumen fermentation and microbiota in sheep. Animals, 10(1): 171, doi: 10.3390%2Fani10010171
Zachut M, Šperanda M, de Almeida AM, Gabai G, Mobasheri A et al., 2020. Biomarkers of fitness and welfare in dairy cattle: healthy productivity. J Dairy Res, 87(1): 4-13, doi: 10.1017/s0022029920000084
Zhang F, Nan X, Wang H, Zhao Y, Guo Y et al., 2020. Effects of propylene glycol on negative energy balance of postpartum dairy cows. Animals, 10(9): 1526, doi: 10.3390%2Fani10091526